1
|
Săcărescu A, Pleşca IC, Turliuc MD. Copeptin's role in traumatic brain injury: The promising quest for a new biomarker. Clin Neurol Neurosurg 2024; 244:108432. [PMID: 38986366 DOI: 10.1016/j.clineuro.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Traumatic brain injury (TBI) necessitates reliable biomarkers to improve patient care. This study explored copeptin as a potential biomarker in TBI and its relation to vasopressin (ADH) in such patients. METHODS A cross-sectional study was conducted on 50 TBI patients. Exclusion criteria included specific medical conditions and recent traumatic events. Copeptin and ADH testing were performed within 30 days post-trauma. Patient data, Glasgow Coma Scale (GCS) scores, imaging results, and the need for surgical intervention were obtained from medical charts. RESULTS Copeptin levels negatively correlated with GCS scores (ρ = - 0.313, p = 0.027), indicating a potential association with trauma severity. Copeptin levels (mean: 3.22 pmol/L, median 2.027 pmol/L, SD = 3.15) tended to be lower than those found in the normal population, suggesting possible neuroendocrine dysfunction post-TBI. ADH levels (mean: 67.93 pmol/L, median 56.474 pmol/L SD = 47.67) were higher than the normal range and associated with the need for surgery (p = 0.048). Surprisingly, copeptin and ADH levels negatively correlated (r = - 0.491; p < 0.001), potentially due to differences in degradation processes and physiological variations in TBI patients. CONCLUSION Copeptin shows potential as a predictive biomarker for assessing TBI severity and predicting patient outcome. However, its complex relationship with ADH in TBI requires further investigation. Careful interpretation is needed due to potential variations in excretion dynamics and metabolism. Larger studies on TBI patient cohorts are essential to validate copeptin as a reliable biomarker and improve patient care in TBI.
Collapse
Affiliation(s)
- Alina Săcărescu
- Department of Medical Specialties III, "Grigore T. Popa" University of Medicine and Pharmacy, Universității 16, Iași 700115, Romania; Department of Neurology, Clinical Rehabilitation Hospital, Pantelimon Halipa 14, Iași 700661, Romania.
| | - Iulia-Cătălina Pleşca
- Faculty of Mathematics, "Alexandru Ioan Cuza" University, Bulevardul Carol I 11, Iași 700506, Romania
| | - Mihaela-Dana Turliuc
- Department of Surgery II, "Grigore T. Popa" University of Medicine and Pharmacy, Universității 16, Iași 700115, Romania; Department of Neurosurgery I, "Prof. Dr. N. Oblu" Clinical Emergency Hospital, Ateneului 2, Iași 700309, Romania
| |
Collapse
|
2
|
Schaedeli Stark F, Chavanne C, Derks M, Jolling K, Lagraauw HM, Lindbom L, Prins K, Silber Baumann HE. A population pharmacokinetics model of balovaptan to support dose selection in adult and pediatric populations. J Pharmacokinet Pharmacodyn 2024; 51:227-242. [PMID: 38308741 PMCID: PMC11136808 DOI: 10.1007/s10928-023-09898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
Balovaptan is a brain-penetrating vasopressin receptor 1a antagonist previously investigated for the core symptoms of autism spectrum disorder (ASD). A population pharmacokinetic (PK) model of balovaptan was developed, initially to assist clinical dosing for adult and pediatric ASD studies and subsequently for new clinical indications including malignant cerebral edema (MCE) and post-traumatic stress disorder. The final model incorporates one-compartment disposition and describes time- and dose-dependent non-linear PK through empirical drug binding and a gut extraction component with turnover. An age effect on clearance observed in children was modeled by an asymptotic function that predicts adult-equivalent exposures at 40% of the adult dose for children aged 2-4 years, 70% for 5-9 years, and at the full adult dose for ≥ 10 years. The model was adapted for intravenous (IV) balovaptan dosing and combined with in vitro and ex vivo pharmacodynamic data to simulate brain receptor occupancy as a guide for dosing in a phase II trial of MCE prophylaxis after acute ischemic stroke. A sequence of three stepped-dose daily infusions of 50, 25 and 15 mg over 30 or 60 min was predicted to achieve a target occupancy of ≥ 80% in ≥ 95% of patients over a 3-day period. This model predicts both oral and IV balovaptan exposure across a wide age range and will be a valuable tool to analyze and predict its PK in new indications and target populations, including pediatric patients.
Collapse
Affiliation(s)
- Franziska Schaedeli Stark
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Clarisse Chavanne
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Michael Derks
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Welwyn, Roche Products Ltd, Hexagon Place, 6 Falcon Way, Welwyn Garden City, AL7 1TW, UK
| | - Koen Jolling
- qPharmetra LLC, Kwakkenbergweg 39, 6523MK, Nijmegen, The Netherlands
| | | | - Lars Lindbom
- qPharmetra LLC, Kwakkenbergweg 39, 6523MK, Nijmegen, The Netherlands
| | - Klaas Prins
- qPharmetra LLC, Kwakkenbergweg 39, 6523MK, Nijmegen, The Netherlands
| | - Hanna E Silber Baumann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
3
|
Zhang Y, Qi X, Li W, Wan M, Ning X, Hu J. Research on the classification of early-stage brain edema by combining intrinsic optical signal imaging and laser speckle contrast imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300394. [PMID: 38169143 DOI: 10.1002/jbio.202300394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The early detection and pathological classification of brain edema are very important for symptomatic treatment. The dual-optical imaging system (DOIS) consists of intrinsic optical signal imaging (IOSI) and laser speckle contrast imaging (LSCI), which can acquire cerebral hemodynamic parameters of mice in real-time, including changes of oxygenated hemoglobin concentration ( Δ C HbO 2 ), deoxyhemoglobin concentration (ΔCHbR) and relative cerebral blood flow (rCBF) within the field of view. The slope sum of Δ C HbO 2 , ΔCHbR and rCBF was proposed to classify vasogenic edema (VE) and cytotoxic edema (CE). The slope sum values in the VE and CE group remain statistically different and the classification results provide higher accuracy of more than 93% for early brain edema detection. In conclusion, the differences of hemodynamic parameters between VE and CE in the early stage were revealed and the method helps in the classification of early brain edema.
Collapse
Affiliation(s)
- Yameng Zhang
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Nanjing Institute of Technology, Nanjing, China
| | - Xinping Qi
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Min Wan
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xue Ning
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Telianidis J, Hunter A, Widdop R, Kemp-Harper B, Pham V, McCarthy C, Chai SY. Inhibition of insulin-regulated aminopeptidase confers neuroprotection in a conscious model of ischemic stroke. Sci Rep 2023; 13:19722. [PMID: 37957163 PMCID: PMC10643421 DOI: 10.1038/s41598-023-46072-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Hunter
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert Widdop
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Kemp-Harper
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Claudia McCarthy
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Li Y, Song J, Huq AM, Timilsina S, Gershwin ME. Posterior reversible encephalopathy syndrome and autoimmunity. Autoimmun Rev 2023; 22:103239. [PMID: 36464226 DOI: 10.1016/j.autrev.2022.103239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a clinical syndrome characterized by acute or subacute onset of neurological symptoms (e.g., headache, seizure, confusion, vomiting, and diminished eyesight) and impaired endothelial barrier function of the cerebral circulation that leads to bilateral subcortical vasogenic edema, while exhibiting a "reversible" feature in most cases. Clinically, various predisposing or precipitating conditions have been identified, such as hypertension, autoimmune diseases, renal dysfunction/failure, preeclampsia/eclampsia, post-transplantation conditions, and certain therapeutic agents. Among several putative mechanisms, the immune activation hypothesis prevails, as up to 50% of patients with PRES harbor abnormalities related to autoimmunity, such as concurrent systemic lupus erythematosus. In this Review, we summarize the clinical and laboratory evidence that places PRES in the context of autoimmunity.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, PR China
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, PR China.
| | - Ahm M Huq
- Department of Pediatrics, Central Michigan University, Detroit, MI 48201, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Glavaš M, Gitlin-Domagalska A, Dębowski D, Ptaszyńska N, Łęgowska A, Rolka K. Vasopressin and Its Analogues: From Natural Hormones to Multitasking Peptides. Int J Mol Sci 2022; 23:3068. [PMID: 35328489 PMCID: PMC8955888 DOI: 10.3390/ijms23063068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.
Collapse
Affiliation(s)
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (D.D.); (N.P.); (A.Ł.); (K.R.)
| | | | | | | | | |
Collapse
|
7
|
Ocampo Daza D, Bergqvist CA, Larhammar D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front Endocrinol (Lausanne) 2021; 12:792644. [PMID: 35185783 PMCID: PMC8851675 DOI: 10.3389/fendo.2021.792644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The neuronal and neuroendocrine peptides oxytocin (OT) and vasotocin (VT), including vasopressins, have six cognate receptors encoded by six receptor subtype genes in jawed vertebrates. The peptides elicit a broad range of responses that are specifically mediated by the receptor subtypes including neuronal functions regulating behavior and hormonal actions on reproduction and water/electrolyte balance. Previously, we have demonstrated that these six receptor subtype genes, which we designated VTR1A, VTR1B, OTR, VTR2A, VTR2B and VTR2C, arose from a syntenic ancestral gene pair, one VTR1/OTR ancestor and one VTR2 ancestor, through the early vertebrate whole-genome duplications (WGD) called 1R and 2R. This was supported by both phylogenetic and chromosomal conserved synteny data. More recently, other studies have focused on confounding factors, such as the OTR/VTR orthologs in cyclostomes, to question this scenario for the origin of the OTR/VTR gene family; proposing instead less parsimonious interpretations involving only one WGD followed by complex series of chromosomal or segmental duplications. Here, we have updated the phylogeny of the OTR/VTR gene family, including a larger number of vertebrate species, and revisited seven representative neighboring gene families from our previous conserved synteny analyses, adding chromosomal information from newer high-coverage genome assemblies from species that occupy key phylogenetic positions: the polypteriform fish reedfish (Erpetoichthys calabaricus), the cartilaginous fish thorny skate (Amblyraja radiata) and a more recent high-quality assembly of the Western clawed frog (Xenopus tropicalis) genome. Our analyses once again add strong support for four-fold symmetry, i.e., chromosome quadruplication in the same time window as the WGD events early in vertebrate evolution, prior to the jawed vertebrate radiation. Thus, the evolution of the OTR/VTR gene family can be most parsimoniously explained by two WGD events giving rise to the six ancestral genes, followed by differential gene losses of VTR2 genes in different lineages. We also argue for more coherence and clarity in the nomenclature of OT/VT receptors, based on the most parsimonious scenario.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Christina A. Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan Larhammar,
| |
Collapse
|
8
|
Cui D, Jia S, Li T, Li D, Wang X, Liu X, Wang YF. Alleviation of brain injury by applying TGN-020 in the supraoptic nucleus via inhibiting vasopressin neurons in rats of focal ischemic stroke. Life Sci 2020; 264:118683. [PMID: 33127515 DOI: 10.1016/j.lfs.2020.118683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022]
Abstract
AIMS To understand mechanisms underlying vasopressin hypersecretion in stroke and its association with brain injury, we investigated effects of blocking aquaporin 4 (AQP4) in the supraoptic nucleus (SON) on vasopressin neuronal activity and cerebral injuries in male rats of unilateral middle cerebral artery occlusion (MCAO). MAIN METHODS Establishing MCAO model without or with microinjection of TGN-020 into the SON, performing Western blots and immunohistochemistry and analyzing the expression levels and spatial distribution of functional proteins in the SON and/or the cerebral cortex. KEY FINDINGS MCAO increased plasma vasopressin levels, caused neurological damage and increased glycogen synthase kinase 3β (GSK-3β) in the SON and the cortex of MCAO side. In the SON, MCAO significantly increased c-Fos in vasopressin neurons and astrocytic somata in the ventral glial lamina. MCAO significantly reduced glial fibrillary acidic protein (GFAP) and AQP4 around vasopressin neurons, which accompanied separation of GFAP from AQP4. By contrast, blocking AQP4 by microinjection of TGN-020 into the SON blocked MCAO-evoked GSK-3β increase as well as the reduction of AQP4 relative to GFAP around vasopressin neurons in the SON. In the cortex, TGN-020 in the SON also blocked MCAO-evoked increase in GSK-3β while reduced neurological damages. SIGNIFICANCE These findings indicate that MCAO disrupts interactions of GFAP with AQP4 in astrocytic processes in the SON, which increases vasopressin neuronal activity. Blocking AQP4 in the SON can block abnormal activation of vasopressin neurons and alleviate ischemic brain injury, which provides novel targets for alleviating ischemic brain injury.
Collapse
Affiliation(s)
- Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|