1
|
Chaudhry F, Kim TW, Elemento O, Betel D. Machine learning analysis of population-wide plasma proteins identifies hormonal biomarkers of Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.21.24313256. [PMID: 39763525 PMCID: PMC11703317 DOI: 10.1101/2024.12.21.24313256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As the number of Parkinson's patients is expected to increase with the growth of the aging population there is a growing need to identify new diagnostic markers that can be used cheaply and routinely to monitor the population, stratify patients towards treatment paths and provide new therapeutic leads. Genetic predisposition and familial forms account for only around 10% of PD cases [1] leaving a large fraction of the population with minimal effective markers for identifying high risk individuals. The establishment of population-wide omics and longitudinal health monitoring studies provides an opportunity to apply machine learning approaches on these unbiased cohorts to identify novel PD markers. Here we present the application of three machine learning models to identify protein plasma biomarkers of PD using plasma proteomics measurements from 43,408 UK Biobank subjects as the training and test set and an additional 103 samples from Parkinson's Progression Markers Initiative (PPMI) as external validation. We identified a group of highly predictive plasma protein markers including known markers such as DDC and CALB2 as well as new markers involved in the JAK-STAT, PI3K-AKT pathways and hormonal signaling. We further demonstrate that these features are well correlated with UPDRS severity scores and stratify these to protective and adversarial features that potentially contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Tae Wan Kim
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea Division of Hematology
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Jiang J, Zhang P, Yuan Y, Xu X, Wu T, Zhang Z, Wang J, Bi Y. Prolactin deficiency drives diabetes-associated cognitive dysfunction by inducing microglia-mediated synaptic loss. J Neuroinflammation 2024; 21:295. [PMID: 39543619 PMCID: PMC11566644 DOI: 10.1186/s12974-024-03289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction, characterized by hippocampal synaptic loss as an early pathological feature, seriously threatens patients' quality of life. Synapses are dynamic structures, and hormones play important roles in modulating the formation and elimination of synapses. The pituitary, the master gland of the body, releases several hormones with multiple roles in hippocampal synaptic regulation. In this study, we aimed to explore the relationship between pituitary hormones and cognitive decline in diabetes. METHODS A total of 744 patients with type 2 diabetes (T2DM) (445 men and 299 postmenopausal women) who underwent serum pituitary hormone level assessments, comprehensive cognitive evaluations and MRI scans were enrolled. Dynamic diet interventions were applied in both chow diet-fed mice and high-fat diet (HFD)-fed diabetic mice. The cognitive performance and hippocampal pathology of prolactin (PRL)-knockout mice, neuronal prolactin receptor (PRLR)-specific knockout mice and microglial PRLR-specific knockout mice were assessed. Microglial PRLR-specific knockout mice were fed an HFD to model diabetes. Diabetic mice received an intracerebroventricular infusion of recombinant PRL protein or vehicle. RESULTS This clinical study revealed that decreased PRL levels were associated with cognitive impairment and hippocampal damage in T2DM patients. In diabetic mice, PRL levels diminished before hippocampal synaptic loss and cognitive decline occurred. PRL loss could directly cause cognitive dysfunction and decreased hippocampal synaptic density. Knockout of PRLR in microglia, rather than neurons, induced hippocampal synaptic loss and cognitive impairment. Furthermore, blockade of PRL/PRLR signaling in microglia exacerbated abnormal microglial phagocytosis of synapses, further aggravating hippocampal synaptic loss and cognitive impairment in diabetic mice. Moreover, PRL infusion reduced microglia-mediated synaptic loss, thereby alleviating cognitive impairment in diabetic mice. CONCLUSION PRL is associated with cognitive dysfunction and hippocampal damage in T2DM patients. In diabetes, a decrease in PRL level drives hippocampal synaptic loss and cognitive impairment by increasing microglia-mediated synapse engulfment. Restoration of PRL levels ameliorates cognitive dysfunction and hippocampal synaptic loss in diabetic mice.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Jin Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
3
|
Martínez-Moreno CG, Calderón-Vallejo D, Díaz-Galindo C, Hernández-Jasso I, Olivares-Hernández JD, Ávila-Mendoza J, Epardo D, Balderas-Márquez JE, Urban-Sosa VA, Baltazar-Lara R, Carranza M, Luna M, Arámburo C, Quintanar JL. Neurotrophic and synaptic effects of GnRH and/or GH upon motor function after spinal cord injury in rats. Sci Rep 2024; 14:26420. [PMID: 39488642 PMCID: PMC11531546 DOI: 10.1038/s41598-024-78073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Thoracic spinal cord injury (SCI) profoundly impairs motor and sensory functions, significantly reducing life quality without currently available effective treatments for neuroprotection or full functional regeneration. This study investigated the neurotrophic and synaptic recovery potential of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) treatments in ovariectomized rats subjected to thoracic SCI. Employing a multidisciplinary approach, we evaluated the effects of these hormones upon gene expression of classical neurotrophins (NGF, BDNF, and NT3) as well as indicative markers of synaptic function (Nlgn1, Nxn1, SNAP25, SYP, and syntaxin-1), together with morphological assessments of myelin sheath integrity (Klüver-Barrera staining and MBP immunoreactivity) and synaptogenic proteins (PSD95, SYP) by immunohystochemistry (IHC) , and also on the neuromotor functional recovery of hindlimbs in the lesioned animals. Results demonstrated that chronic administration of GnRH and GH induced notable upregulation in the expression of several neurotrophic and synaptogenic activity genes. Additionally, the treatment showed a significant impact on the restoration of functional synaptic markers and myelin integrity. Intriguingly, while individual GnRH application induced certain recovery benefits, the combined treatment with GH appeared to inhibit neuromotor recovery, suggesting a complex interplay in hormonal regulation post-SCI. GnRH and GH are bioactive and participate in modulating neurotrophic responses and synaptic restoration under neural damage conditions, offering insights into novel therapeutic approaches for SCI. However, the intricate effects of combined hormonal treatment accentuate the necessity for further investigation that conduce to optimal and novel therapeutic strategies for patients with spinal cord lesions.
Collapse
Affiliation(s)
- C G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - C Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - I Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J D Olivares-Hernández
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - D Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - V A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - C Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
| | - J L Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
4
|
Cheng Y, Lin L, Hou W, Qiu H, Deng C, Yan Z, Qian L, Cui W, Li Y, Yang Z, Chen Q, Su S. Altered individual-level morphological similarity network in children with growth hormone deficiency. J Neurodev Disord 2024; 16:48. [PMID: 39187797 PMCID: PMC11346214 DOI: 10.1186/s11689-024-09566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Accumulating evidences indicate regional grey matter (GM) morphology alterations in pediatric growth hormone deficiency (GHD); however, large-scale morphological brain networks (MBNs) undergo these patients remains unclear. OBJECTIVE To investigate the topological organization of individual-level MBNs in pediatric GHD. METHODS Sixty-one GHD and 42 typically developing controls (TDs) were enrolled. Inter-regional morphological similarity of GM was taken to construct individual-level MBNs. Between-group differences of topological parameters and network-based statistics analysis were compared. Finally, association relationship between network properties and clinical variables was analyzed. RESULTS Compared to TDs, GHD indicated a disturbance in the normal small-world organization, reflected by increased Lp, γ, λ, σ and decreased Cp, Eglob (all PFDR < 0.017). Regarding nodal properties, GHD exhibited increased nodal profiles at cerebellum 4-5, central executive network-related left inferior frontal gyrus, limbic regions-related right posterior cingulate gyrus, left hippocampus, and bilateral pallidum, thalamus (all PFDR < 0.05). Meanwhile, GHD exhibited decreased nodal profiles at sensorimotor network -related bilateral paracentral lobule, default-mode network-related left superior frontal gyrus, visual network -related right lingual gyrus, auditory network-related right superior temporal gyrus and bilateral amygdala, right cerebellum 3, bilateral cerebellum 10, vermis 1-2, 3, 4-5, 6 (all PFDR < 0.05). Furthermore, serum markers and behavior scores in GHD group were correlated with altered nodal profiles (P ≤ 0.046, uncorrected). CONCLUSION GHD undergo an extensive reorganization in large-scale individual-level MBNs, probably due to abnormal cortico-striatal-thalamo-cerebellum loops, cortico-limbic-cerebellum, dorsal visual-sensorimotor-striatal, and auditory-cerebellum circuitry. This study highlights the crucial role of abnormal morphological connectivity underlying GHD, which might result in their relatively slower development in motor, cognitive, and linguistic functional within behavior problem performance.
Collapse
Affiliation(s)
- Yanglei Cheng
- Department of Endocrine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Hou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaqiong Qiu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengfen Deng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yanbing Li
- Department of Endocrine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Chen
- Department of Pediatric, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
6
|
Martínez-Moreno CG, Calderón-Vallejo D, Díaz-Galindo C, Hernández-Jasso I, Olivares-Hernández JD, Ávila-Mendoza J, Epardo D, Balderas-Márquez JE, Urban-Sosa VA, Baltazar-Lara R, Carranza M, Luna M, Arámburo C, Quintanar JL. Gonadotropin-releasing hormone and growth hormone act as anti-inflammatory factors improving sensory recovery in female rats with thoracic spinal cord injury. Front Neurosci 2023; 17:1164044. [PMID: 37360158 PMCID: PMC10288327 DOI: 10.3389/fnins.2023.1164044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
The potential for novel applications of classical hormones, such as gonadotropin-releasing hormone (GnRH) and growth hormone (GH), to counteract neural harm is based on their demonstrated neurotrophic effects in both in vitro and in vivo experimental models and a growing number of clinical trials. This study aimed to investigate the effects of chronic administration of GnRH and/or GH on the expression of several proinflammatory and glial activity markers in damaged neural tissues, as well as on sensory recovery, in animals submitted to thoracic spinal cord injury (SCI). Additionally, the effect of a combined GnRH + GH treatment was examined in comparison with single hormone administration. Spinal cord damage was induced by compression using catheter insufflation at thoracic vertebrae 10 (T10), resulting in significant motor and sensory deficits in the hindlimbs. Following SCI, treatments (GnRH, 60 μg/kg/12 h, IM; GH, 150 μg/kg/24 h, SC; the combination of both; or vehicle) were administered during either 3 or 5 weeks, beginning 24 h after injury onset and ending 24 h before sample collection. Our results indicate that a chronic treatment with GH and/or GnRH significantly reduced the expression of proinflammatory (IL6, IL1B, and iNOS) and glial activity (Iba1, CD86, CD206, vimentin, and GFAP) markers in the spinal cord tissue and improved sensory recovery in the lesioned animals. Furthermore, we found that the caudal section of the spinal cord was particularly responsive to GnRH or GH treatment, as well as to their combination. These findings provide evidence of an anti-inflammatory and glial-modulatory effect of GnRH and GH in an experimental model of SCI and suggest that these hormones can modulate the response of microglia, astrocytes, and infiltrated immune cells in the spinal cord tissue following injury.
Collapse
Affiliation(s)
- Carlos Guillermo Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Juan David Olivares-Hernández
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Jerusa Elienai Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Valeria Alejandra Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Rosario Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
7
|
Cheng RQ, Ying YQ, Qiu ZQ, Fu JF, Gong CX, Yang YL, Shi W, Li H, Ma MS, Wang CY, Liu M, Chen JJ, Su C, Luo XP, Luo FH, Lu W. Early recombinant human growth hormone treatment improves mental development and alleviates deterioration of motor function in infants and young children with Prader-Willi syndrome. World J Pediatr 2023; 19:438-449. [PMID: 36564648 PMCID: PMC10149441 DOI: 10.1007/s12519-022-00653-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/07/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recombinant human growth hormone (rhGH) therapy has shown to improve height and body composition in children with Prader-Willi syndrome (PWS), the evidence of early rhGH treatment on motor and mental development is still accumulating. This study explored the time effect on psychomotor development, anthropometric indexes, and safety for infants and young children with PWS. METHODS A phase 3, single-arm, multicenter, self-controlled study was conducted in six sites. Patients received rhGH at 0.5 mg/m2/day for first four weeks, and 1 mg/m2/day thereafter for up to 52 weeks. Motor development was measured using Peabody Developmental Motor Scales-second edition, mental development using Griffiths Development Scales-Chinese (GDS-C). Height standard deviation score (SDS), body weight SDS, and body mass index (BMI) SDS were also assessed. RESULTS Thirty-five patients were enrolled totally. Significant improvements were observed in height, body weight, and BMI SDS at week 52; GDS-C score showed significant improvement in general quotient (GQ) and sub-quotients. In a linear regression analysis, total motor quotient (TMQ), gross motor quotient (GMQ), and fine motor quotient were negatively correlated with age; however, treatment may attenuate deterioration of TMQ and GMQ. Changes in GQ and locomotor sub-quotient in < 9-month group were significantly higher than ≥ 9-month group. Mild to moderate severity adverse drug reactions were reported in six patients. CONCLUSION Fifty-two-week treatment with rhGH improved growth, BMI, mental development, and lessened the deterioration of motor function in infants and young children with PWS. Improved mental development was more pronounced when instituted in patients < 9 months old.
Collapse
Affiliation(s)
- Ruo-Qian Cheng
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yan-Qin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Qing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Fen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Xiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan-Ling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Shi
- Department of Rehabilitation, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Hui Li
- Department of Rehabilitation, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ming-Sheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Yan Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jia-Jia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei-Hong Luo
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
8
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Sarkaki A, Farbood Y. Administration of growth hormone ameliorates adverse effects of total sleep deprivation. Metab Brain Dis 2023; 38:1671-1681. [PMID: 36862276 DOI: 10.1007/s11011-023-01192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Total sleep deprivation (TSD) causes several harmful changes including anxiety, inflammation, and increased expression of extracellular signal-regulated kinase (ERK) and tropomyosin receptor kinase B (TrkB) genes in the hippocampus. The current study was conducted to explain the possible effects of exogenous GH against the above parameters caused by TSD and the possible mechanisms involved. Male Wistar rats were divided into 1) control, 2) TSD and 3) TSD + GH groups. To induce TSD, the rats received a mild repetitive electric shock (2 mA, 3 s) to their paws every 10 min for 21 days. Rats in the third group received GH (1 ml/kg, sc) for 21 days as treatment for TSD. The motor coordination, locomotion, the level of IL-6, and expression of ERK and TrkB genes in hippocampal tissue were measured after TSD. The motor coordination (p < 0.001) and locomotion indices (p < 0.001) were impaired significantly by TSD. The concentrations of serum corticotropin-releasing hormone (CRH) (p < 0.001) and hippocampal interleukin-6 (IL-6) (p < 0.001) increased. However, there was a significant decrease in the interleukin-4 (IL-4) concentration and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus of rats with TSD. Treatment of TSD rats with GH improved motor balance (p < 0.001) and locomotion (p < 0.001), decreased serum CRH (p < 0.001), IL-6 (p < 0.01) but increased the IL-4 and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus. Results show that GH plays a key role in modulating the stress hormone, inflammation, and the expression of ERK and TrkB genes in the hippocampus following stress during TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Zhou Z, Luo Y, Gao X, Zhu Y, Bai X, Yang H, Bi Q, Chen S, Duan L, Wang L, Gong F, Feng F, Gong G, Zhu H, Pan H. Alterations in brain structure and function associated with pediatric growth hormone deficiency: A multi-modal magnetic resonance imaging study. Front Neurosci 2023; 16:1043857. [PMID: 36685242 PMCID: PMC9853296 DOI: 10.3389/fnins.2022.1043857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Pediatric growth hormone deficiency (GHD) is a disease resulting from impaired growth hormone/insulin-like growth factor-1 (IGF-1) axis but the effects of GHD on children's cognitive function, brain structure and brain function were not yet fully illustrated. Methods Full Wechsler Intelligence Scales for Children, structural imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were assessed in 11 children with GHD and 10 matched healthy controls. Results (1) The GHD group showed moderate cognitive impairment, and a positive correlation existed between IGF-1 levels and cognitive indices. (2) Mean diffusivity was significantly increased in both corticospinal tracts in GHD group. (3) There were significant positive correlations between IGF-1 levels and volume metrics of left thalamus, left pallidum and right putamen but a negative correlation between IGF-1 levels and cortical thickness of the occipital lobe. And IGF-1 levels negatively correlated with fractional anisotropy in the superior longitudinal fasciculus and right corticospinal tract. (4) Regional homogeneity (ReHo) in the left hippocampus/parahippocampal gyrus was negatively correlated with IGF-1 levels; the amplitude of low-frequency fluctuation (ALFF) and ReHo in the paracentral lobe, postcentral gyrus and precentral gyrus were also negatively correlated with IGF-1 levels, in which region ALFF fully mediates the effect of IGF-1 on working memory index. Conclusion Multiple subcortical, cortical structures, and regional neural activities might be influenced by serum IGF-1 levels. Thereinto, ALFF in the paracentral lobe, postcentral gyrus and precentral gyrus fully mediates the effect of IGF-1 on the working memory index.
Collapse
Affiliation(s)
- Zhibo Zhou
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyun Luo
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanlin Zhu
- Beijing Normal University, Beijing, China
| | - Xi Bai
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Huijuan Zhu,
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Hui Pan,
| |
Collapse
|
10
|
Guan K, Shan C, Guo A, Gao X, Li X. Ghrelin regulates hyperactivity-like behaviors via growth hormone signaling pathway in zebrafish ( Danio rerio). Front Endocrinol (Lausanne) 2023; 14:1163263. [PMID: 37065761 PMCID: PMC10102434 DOI: 10.3389/fendo.2023.1163263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION Ghrelin is originally identified as the endogenous ligand for the growth hormone secretagogue receptor (GHSR) and partially acts by stimulating growth hormone (GH) release. Our previous studies have identified GHRELIN as a novel susceptibility gene for human attention-deficit hyperactivity disorder (ADHD), and ghrelin-depleted zebrafish (Danio rerio) display ADHD-like behaviors. However, the underlying molecular mechanism how ghrelin regulates hyperactivity-like behaviors is not yet known. RESULTS Here, we performed RNA-sequencing analysis using adult ghrelin Δ/Δ zebrafish brains to investigate the underlying molecular mechanisms. We found that gh1 mRNA and genes related to the gh signaling pathway were significantly reduced at transcriptional expression levels. Quantitative polymerase chain reaction (qPCR) was performed and confirmed the downregulation of gh signaling pathway-related genes in ghrelin Δ/Δ zebrafish larvae and the brain of adult ghrelin Δ/Δ zebrafish. In addition, ghrelin Δ/Δ zebrafish displayed hyperactive and hyperreactive phenotypes, such as an increase in motor activity in swimming test and a hyperreactive phenotype under light/dark cycle stimulation, mimicking human ADHD symptoms. Intraperitoneal injection of recombinant human growth hormone (rhGH) partially rescued the hyperactivity and hyperreactive-like behaviors in ghrelin mutant zebrafish. CONCLUSION Our results indicated that ghrelin may regulate hyperactivity-like behaviors by mediating gh signaling pathway in zebrafish. And the protective effect of rhGH on ghrelin Δ/Δ zebrafish hyperactivity behavior provides new therapeutic clues for ADHD patients.
Collapse
Affiliation(s)
- Kaiyu Guan
- Department of Clinical Psychology, Wenzhou Seventh People’s Hospital, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, China
| | - Chunyan Shan
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, China
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, China
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Xi Li, ; Xiang Gao,
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, Zhejiang, China
- *Correspondence: Xi Li, ; Xiang Gao,
| |
Collapse
|
11
|
Abstract
Childhood obesity is, according to the WHO, one of the most serious challenges of the 21st century. More than 100 million children have obesity today. Already during childhood, almost all organs are at risk of being affected by obesity. In this review, we present the current knowledge about diseases associated with childhood obesity and how they are affected by weight loss. One major causative factor is obesity-induced low-grade chronic inflammation, which can be observed already in preschool children. This inflammation-together with endocrine, paracrine, and metabolic effects of obesity-increases the long-term risk for several severe diseases. Type 2 diabetes is increasingly prevalent in adolescents and young adults who have had obesity during childhood. When it is diagnosed in young individuals, the morbidity and mortality rate is higher than when it occurs later in life, and more dangerous than type 1 diabetes. Childhood obesity also increases the risk for several autoimmune diseases such as multiple sclerosis, Crohn's disease, arthritis, and type 1 diabetes and it is well established that childhood obesity also increases the risk for cardiovascular disease. Consequently, childhood obesity increases the risk for premature mortality, and the mortality rate is three times higher already before 30 years of age compared with the normal population. The risks associated with childhood obesity are modified by weight loss. However, the risk reduction is affected by the age at which weight loss occurs. In general, early weight loss-that is, before puberty-is more beneficial, but there are marked disease-specific differences.
Collapse
Affiliation(s)
- Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Danielsson
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emilia Hagman
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Growth Hormone (GH) Crosses the Blood–Brain Barrier (BBB) and Induces Neuroprotective Effects in the Embryonic Chicken Cerebellum after a Hypoxic Injury. Int J Mol Sci 2022; 23:ijms231911546. [PMID: 36232848 PMCID: PMC9570246 DOI: 10.3390/ijms231911546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood–brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1β, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.
Collapse
|
13
|
Cell Proliferation in the Piriform Cortex of Rats with Motor Cortex Ablation Treated with Growth Hormone and Rehabilitation. Int J Mol Sci 2021; 22:ijms22115440. [PMID: 34064044 PMCID: PMC8196768 DOI: 10.3390/ijms22115440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury represents one of the main health problems in developed countries. Growth hormone (GH) and rehabilitation have been claimed to significantly contribute to the recovery of lost motor function after acquired brain injury, but the mechanisms by which this occurs are not well understood. In this work, we have investigated cell proliferation in the piriform cortex (PC) of adult rats with ablation of the frontal motor cortex treated with GH and rehabilitation, in order to evaluate if this region of the brain, related to the sense of smell, could be involved in benefits of GH treatment. Male rats were either ablated the frontal motor cortex in the dominant hemisphere or sham-operated and treated with GH or vehicle at 35 days post-injury (dpi) for five days. At 36 dpi, all rats received daily injections of bromodeoxyuridine (BrdU) for four days. We assessed motor function through the paw-reaching-for-food task. GH treatment and rehabilitation at 35 dpi significantly improved the motor deficit caused by the injury and promoted an increase of cell proliferation in the PC ipsilateral to the injury, which could be involved in the improvement observed. Cortical ablation promoted a greater number of BrdU+ cells in the piriform cortex that was maintained long-term, which could be involved in the compensatory mechanisms of the brain after injury.
Collapse
|