1
|
Nellis ME, Moynihan KM, Sloan SR, Delaney M, Kneyber MCJ, DiGeronimo R, Alexander PMA, Muszynski JA, Gehred A, Lyman E, Karam O. Prophylactic Transfusion Strategies in Children Supported by Extracorporeal Membrane Oxygenation: The Pediatric Extracorporeal Membrane Oxygenation Anticoagulation CollaborativE Consensus Conference. Pediatr Crit Care Med 2024; 25:e25-e34. [PMID: 38959357 PMCID: PMC11216389 DOI: 10.1097/pcc.0000000000003493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To derive systematic-review informed, modified Delphi consensus regarding prophylactic transfusions in neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE. DATA SOURCES A structured literature search was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2020, with an update in May 2021. STUDY SELECTION Included studies assessed use of prophylactic blood product transfusion in pediatric ECMO. DATA EXTRACTION Two authors reviewed all citations independently, with a third independent reviewer resolving conflicts. Thirty-three references were used for data extraction and informed recommendations. Evidence tables were constructed using a standardized data extraction form. MEASUREMENTS AND MAIN RESULTS The evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation system. Forty-eight experts met over 2 years to develop evidence-informed recommendations and, when evidence was lacking, expert-based consensus statements or good practice statements for prophylactic transfusion strategies for children supported with ECMO. A web-based modified Delphi process was used to build consensus via the Research And Development/University of California Appropriateness Method. Consensus was based on a modified Delphi process with agreement defined as greater than 80%. We developed two good practice statements, 4 weak recommendations, and three expert consensus statements. CONCLUSIONS Despite the frequency with which pediatric ECMO patients are transfused, there is insufficient evidence to formulate evidence-based prophylactic transfusion strategies.
Collapse
Affiliation(s)
- Marianne E Nellis
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, NY Presbyterian Hospital-Weill Cornell Medicine, New York, NY
| | - Katie M Moynihan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, NY Presbyterian Hospital-Weill Cornell Medicine, New York, NY
- Department of Cardiology, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC
- Department of Pathology and Pediatrics, George Washington University Health Sciences, Washington, DC
- Pediatric Intensive Care Unit, Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- The Ohio State University of Medicine, Columbus, OH
- Grant Morrow III MD Medical Library, Nationwide Children's Hospital Columbus, OH
- Division of Critical Care Medicine, Children's Hospital of Richmond at VCU, Richmond, VA
- Division of Critical Care Medicine, Yale School of Medicine, New Haven, CT
| | - Steven R Sloan
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Meghan Delaney
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC
- Department of Pathology and Pediatrics, George Washington University Health Sciences, Washington, DC
| | - Martin C J Kneyber
- Pediatric Intensive Care Unit, Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert DiGeronimo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Peta M A Alexander
- Department of Cardiology, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- The Ohio State University of Medicine, Columbus, OH
| | - Alison Gehred
- Grant Morrow III MD Medical Library, Nationwide Children's Hospital Columbus, OH
| | - Elizabeth Lyman
- Grant Morrow III MD Medical Library, Nationwide Children's Hospital Columbus, OH
| | - Oliver Karam
- Division of Critical Care Medicine, Children's Hospital of Richmond at VCU, Richmond, VA
- Division of Critical Care Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
3
|
Dudaryk R, Heim C, Ruetzler K, Pivalizza EG. Pro-Con Debate: Prehospital Blood Transfusion-Should It Be Adopted for Civilian Trauma? Anesth Analg 2022; 134:678-682. [PMID: 35299208 DOI: 10.1213/ane.0000000000005747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Exsanguination is the leading cause of death in severely injured patients; nevertheless, prehospital blood transfusion (PHT) remains a controversial topic. Here, we review the pros and cons of PHT, which is now routine in treatment of military trauma patients in the civilian setting. While PHT may improve survival in those who suffer blunt injury or require prolonged transport from the site of injury, PHT for civilian trauma generally is not supported by high-quality evidence. This article was originally presented as a pro-con debate at the 2020 meeting of the European Society of Anesthesiology and Intensive Care.
Collapse
Affiliation(s)
- Roman Dudaryk
- From the Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Health System, Miami, Florida
| | - Catherine Heim
- Department of Anesthesiology, University Hospital, CHUV Lausanne, Lausanne, Switzerland
| | - Kurt Ruetzler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Evan G Pivalizza
- Department of Anesthesiology, University of Texas, McGovern Medical School, Houston, Texas
| |
Collapse
|
4
|
Blaine KP, Dudaryk R. Pro-Con Debate: Viscoelastic Hemostatic Assays Should Replace Fixed Ratio Massive Transfusion Protocols in Trauma. Anesth Analg 2022; 134:21-31. [PMID: 34908543 DOI: 10.1213/ane.0000000000005709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Major trauma patients at risk of traumatic coagulopathy are commonly treated with early clotting factor replacement to maintain hemostasis and prevent microvascular bleeding. In the United States, trauma transfusions are often dosed by empiric, low-ratio massive transfusion protocols, which pair plasma and platelets in some ratio relative to the red cells, such as the "1:1:1" combination of 1 units of red cells, 1 unit of plasma, and 1 donor's worth of pooled platelets. Empiric transfusion increases the rate of overtransfusion when unnecessary blood products are administered based on a formula and not on at patient's hemostatic profile. Viscoelastic hemostatic assays (VHAs) are point-of-care hemostatic assays that provided detailed information about abnormal clotting pathways. VHAs are used at many centers to better target hemostatic therapies in trauma. This Pro/Con section will address whether VHA guidance should replace empiric fixed ratio protocols in major trauma.
Collapse
Affiliation(s)
- Kevin P Blaine
- From the Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Roman Dudaryk
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Health System/Ryder Trauma Center, Miami, Florida
| |
Collapse
|
5
|
Abstract
Abstract
Transfusion-related acute lung injury is a leading cause of death associated with the use of blood products. Transfusion-related acute lung injury is a diagnosis of exclusion which can be difficult to identify during surgery amid the various physiologic and pathophysiologic changes associated with the perioperative period. As anesthesiologists supervise delivery of a large portion of inpatient prescribed blood products, and since the incidence of transfusion-related acute lung injury in the perioperative patient is higher than in nonsurgical patients, anesthesiologists need to consider transfusion-related acute lung injury in the perioperative setting, identify at-risk patients, recognize early signs of transfusion-related acute lung injury, and have established strategies for its prevention and treatment.
Collapse
|
6
|
Shander A, Friedman T, Palleschi G, Shore-Lesserson L. The Evolving Dilemma of Factor XI in Pregnancy: Suggestions for Management. Anesth Analg 2019; 126:2032-2037. [PMID: 29381511 DOI: 10.1213/ane.0000000000002836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A case of a patient with severe factor XI (FXI) deficiency who presented for her seventh labor and delivery is presented. The nature of FXI deficiency, its prevalence, and issues related to genetic screening are discussed. Published literature on the topic is reviewed, including criteria that were developed to assess bleeding, laboratory tools used to estimate bleeding risk, and available treatments. Within the context of this challenging clinical dilemma, specific recommendations are provided for the antepartum, intrapartum, and postpartum stages of pregnancy. These include recommendations that take into account both FXI levels and history of any abnormal bleeding. While there are effective treatments available, it is important to consider that institutional multidisciplinary protocols are needed to manage this complex disorder. More work is needed to define the best management protocols.
Collapse
Affiliation(s)
- Aryeh Shander
- From the Department of Anesthesiology, Critical Care Medicine, Pain Management, and Hyperbaric Medicine, Englewood Hospital and Medical Center, Englewood, New Jersey.,TeamHealth Research Institute, TeamHealth, Englewood, New Jersey
| | - Tamara Friedman
- TeamHealth Research Institute, TeamHealth, Englewood, New Jersey
| | - Greg Palleschi
- Department of Anesthesiology, Northshore University Hospital at Northwell Health, Manhasset, New York
| | - Linda Shore-Lesserson
- Department of Anesthesiology, Northshore University Hospital at Northwell Health, Manhasset, New York
| |
Collapse
|
7
|
Monaco F, Barucco G, Nardelli P, Licheri M, Notte C, De Luca M, Mattioli C, Melissano G, Chiesa R, Zangrillo A. Editor's Choice – A Rotational Thromboelastometry Driven Transfusion Strategy Reduces Allogenic Blood Transfusion During Open Thoraco-abdominal Aortic Aneurysm Repair: A Propensity Score Matched Study. Eur J Vasc Endovasc Surg 2019; 58:13-22. [DOI: 10.1016/j.ejvs.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 10/26/2022]
|
8
|
Vossoughi S, Gorlin J, Kessler DA, Hillyer CD, Van Buren NL, Jimenez A, Shaz BH. Ten years of TRALI mitigation: measuring our progress. Transfusion 2019; 59:2567-2574. [PMID: 31145481 DOI: 10.1111/trf.15387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality for which multiple mitigation strategies have been implemented over the past decade. However, product-specific TRALI rates have not been reported longitudinally and may help refine additional mitigation strategies. STUDY DESIGN AND METHODS This retrospective multicenter study included analysis of TRALI rates from 2007 through 2017. Numerators included definite or probable TRALI reports from five blood centers serving nine states in the United States. Denominators were components distributed from participating centers. Rates were calculated as per 100,000 components distributed (p < 0.05 significant). RESULTS One hundred four TRALI cases were reported from 10,012,707 components distributed (TRALI rate of 1.04 per 100,000 components). The TRALI rate was 2.25 for female versus 1.08 for male donated components (p < .001). The TRALI rate declined from 2.88 in 2007 to 0.60 in 2017. From 2007 to 2013, there was a significantly higher TRALI rate associated with female versus male plasma (33.85 vs. 1.59; p < 0.001) and RBCs (1.97 vs. 1.15; p = 0.03). From 2014 through 2017, after implementation of mitigation strategies, a significantly higher TRALI rate only from female-donated plateletpheresis continued to be observed (2.98 vs. 0.75; p = 0.04). CONCLUSION Although the TRALI rates have substantially decreased secondary to multiple strategies over the past decade, a residual risk remains, particularly with female-donated plateletpheresis products. Additional tools that may further mitigate TRALI incidence include the use of buffy coat pooled platelets suspended in male donor plasma or platelet additive solution due to the lower amounts of residual plasma.
Collapse
Affiliation(s)
- Sarah Vossoughi
- New York Blood Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Jed Gorlin
- Innovative Blood Resources, St. Paul, Minnesota
| | | | | | | | | | - Beth H Shaz
- New York Blood Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
9
|
Shander A, Kim TY, Goodnough LT. Thresholds, triggers or requirements-time to look beyond the transfusion trials. J Thorac Dis 2018; 10:1152-1157. [PMID: 29708142 DOI: 10.21037/jtd.2018.02.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aryeh Shander
- Departments of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Hospital and Medical Center, Englewood, NJ, USA.,TeamHealth Research Institute, Englewood, NJ, USA
| | - Tae-Yop Kim
- Department of Anesthesiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | | |
Collapse
|