1
|
Koifman N, Nir-Shapira M, Talmon Y. Selective labeling of phosphatidylserine for cryo-TEM by a two-step immunogold method. J Struct Biol 2023; 215:108025. [PMID: 37678713 DOI: 10.1016/j.jsb.2023.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Immunogold labeling in transmission electron microscopy (TEM) utilizes the high electron density of gold nanoparticles conjugated to proteins to identify specific antigens in biological samples. In this work we applied the concept of immunogold labeling for the labeling of negatively charged phospholipids, namely phosphatidylserine, by a simple protocol, performed entirely in the liquid-phase, from which cryo-TEM specimens can be directly prepared. Labeling included a two-step process using biotinylated annexin-V and gold-conjugated streptavidin. We initially applied it on liposomal systems, demonstrating its specificity and selectivity, differentiating between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) membranes. We also observed specific labeling on extracellular vesicle samples isolated from THP1 cells and from MDA-468 cells, which underwent stimulations. Finally, we compared the levels of annexin-V labeling on the cells vs. on their isolated EVs by flow cytometry and found a good correlation with the cryo-TEM results. This simple, yet effective labeling technique makes it possible to differentiate between negatively charged and non-negatively charged membranes, thus shillucidating their possible EV shedding mechanism.
Collapse
Affiliation(s)
- Na'ama Koifman
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Maayan Nir-Shapira
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Lu Z, Xu CS, Hayworth KJ, Pang S, Shinomiya K, Plaza SM, Scheffer LK, Rubin GM, Hess HF, Rivlin PK, Meinertzhagen IA. En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. Front Neural Circuits 2022; 16:917251. [PMID: 36589862 PMCID: PMC9801301 DOI: 10.3389/fncir.2022.917251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly Drosophila, in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature en bloc staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the Drosophila brain. These requirements include: good preservation of ultrastructural detail, high level of en bloc staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth J. Hayworth
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Yale School of Medicine, New Haven, CT, United States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen M. Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Louis K. Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Patricia K. Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States,*Correspondence: Patricia K. Rivlin,
| | - Ian A. Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States,*Correspondence: Patricia K. Rivlin,
| |
Collapse
|
3
|
Sele M, Wernitznig S, Lipovšek S, Radulović S, Haybaeck J, Birkl-Toeglhofer AM, Wodlej C, Kleinegger F, Sygulla S, Leoni M, Ropele S, Leitinger G. Optimization of ultrastructural preservation of human brain for transmission electron microscopy after long post-mortem intervals. Acta Neuropathol Commun 2019; 7:144. [PMID: 31481118 PMCID: PMC6724377 DOI: 10.1186/s40478-019-0794-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Electron microscopy (EM) provides the necessary resolution to visualize the finer structures of nervous tissue morphology, which is important to understand healthy and pathological conditions in the brain. However, for the interpretation of the micrographs the tissue preservation is crucial. The quality of the tissue structure is mostly influenced by the post mortem interval (PMI), the time of death until the preservation of the tissue. Therefore, the aim of this study was to optimize the preparation-procedure for the human frontal lobe to preserve the ultrastructure as well as possible despite the long PMIs. Combining chemical pre- and post-fixation with cryo-fixation and cryo-substitution ("hybrid freezing"), it was possible to improve the preservation of the neuronal profiles of human brain samples compared to the "standard" epoxy resin embedding method. In conclusion short PMIs are generally desirable but up to a PMI of 16 h the ultrastructure can be preserved on an acceptable level with a high contrast using the "hybrid freezing" protocol described here.
Collapse
|
4
|
Enhanced method for High Spatial Resolution surface imaging and analysis of fungal spores using Scanning Electron Microscopy. Sci Rep 2018; 8:16278. [PMID: 30390022 PMCID: PMC6214942 DOI: 10.1038/s41598-018-34629-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
Efficient, fast and new micro-analytical methods for characterization of ultrastructures of fungal spores with electron microscopy are very much required and essential. SEM analysis of biological materials, especially fungi, requires optimal preparation of the specimen and often requires the usage of dried samples which demands a challenging sample preparation. In the present investigation, we described a fast and improved method for the preparation of fungal specimen for scanning electron microscopy (SEM). The fungus, Curvularia lunata was grown on the surface of sterile Whatman No.1 filter paper which was overlaid on Potato Dextrose Agar (PDA) medium, gold coated immediately after removal from the growth medium and subjected to imaging. Generally, SEM imaging is done with samples that were fixed with chemical fixatives, dehydrated and gold coated specimens, but here we describe an easy and more efficient sample preparation for SEM which enabled enhanced image quality and precision visualization of fungal cells, especially the spores. The developed method has enabled the analysis of even the robust samples like fungal spores that to eliminating special temperature requirement. The ultimate goal was to develop an improved protocol/method applied to analysis of fungal spores with greater coverage about fungal specimen preparation. This method permits the use of rapid sample preparation and will allow us to imaging of individual spore or conidia structures in the context of fungal cell architecture which clarifies our understanding in fungal taxonomy/biology.
Collapse
|
5
|
Ochs M, Knudsen L, Hegermann J, Wrede C, Grothausmann R, Mühlfeld C. Using electron microscopes to look into the lung. Histochem Cell Biol 2016; 146:695-707. [PMID: 27688057 DOI: 10.1007/s00418-016-1502-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
In the nineteenth century, there was a dispute about the existence of a lung alveolar epithelium which remained unsolved until the invention of electron microscopy (EM) and its application to the lung. From the early 1960s, Ewald Weibel became the master of lung EM. He showed that the alveolar epithelium is covered with a lining layer containing surfactant. Weibel also explained the phenomenon of "non-nucleated plates" observed already in 1881 by Albert Kölliker. Weibel's most significant contribution was to the development of stereological methods. Therefore, quantitative characterization of lung structure revealing structure-function relationships became possible. Today, the spectrum of EM methods to study the fine structure of the lung has been extended significantly. Cryo-preparation techniques are available which are necessary for immunogold labeling of molecules. Energy-filtering techniques can be used for the detection of elements. There have also been major improvements in stereology, thus providing a very versatile toolbox for quantitative lung phenotype analyses. A new dimension was added by 3D EM techniques. Depending on the desired sample size and resolution, the spectrum ranges from array tomography via serial block face scanning EM and focused ion beam scanning EM to electron tomography. These 3D datasets provide new insights into lung ultrastructure. Biomedical EM is an ever-developing field. Its high resolution remains unparalleled. Moreover, EM has the unique advantage of providing an "open view" into cells and tissues within their full architectural context. Therefore, EM will remain an indispensable tool for a better understanding of the lung's functional design.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| |
Collapse
|
6
|
Immuno-Gold Labeling of Drosophila Follicles for Transmission Electron Microscopy. Methods Mol Biol 2016. [PMID: 27557575 DOI: 10.1007/978-1-4939-3795-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Detecting the localization of cellular components using gold nanoparticles has come to offer tremendous advantages in cell biology, allowing for the high resolution imaging of the cellular organization at the subcellular level. This is further aided by the breakthroughs in the cryopreparation of samples, which focus at the retention of antigenicity in efforts to mirror the native state of the tissues and cells as closely as possible. Herein, we describe the methodology for immuno-gold labeling of Drosophila follicles, following preparation of the samples using the Tokuyasu method for ultracryosectioning.
Collapse
|
7
|
Fišerová J, Richardson C, Goldberg MW. Immunoelectron Microscopy of Cryofixed Freeze-Substituted Yeast Saccharomyces cerevisiae. Methods Mol Biol 2016; 1474:243-258. [PMID: 27515085 DOI: 10.1007/978-1-4939-6352-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immunolabeling electron microscopy is a challenging technique with demands for perfect ultrastructural and antigen preservation. High-pressure freezing offers an excellent way to fix cellular structure. However, its use for immunolabeling has remained limited because of the low frequency of labeling due to loss of protein antigenicity or accessibility. Here we present a protocol for immunogold labeling of the yeast Saccharomyces cerevisiae that gives specific and multiple labeling while keeping the finest structural details. We use the protocol to reveal the organization of individual nuclear pore complex proteins and the position of transport factors in the yeast Saccharomyces cerevisiae in relation to actual transport events.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Martin W Goldberg
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
8
|
Bert W, Slos D, Leroux O, Claeys M. Cryo-fixation and associated developments in transmission electron microscopy: a cool future for nematology. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
At present, the importance of sample preparation equipment for electron microscopy represents the driving force behind major breakthroughs in microscopy and cell biology. In this paper we present an introduction to the most commonly used cryo-fixation techniques, with special attention paid towards high-pressure freezing followed by freeze substitution. Techniques associated with cryo-fixation, such as immunolocalisation, cryo-sectioning, and correlative light and electron microscopy, are also highlighted. For studies that do not require high resolution, high quality results, or the immediate arrest of certain processes, conventional methods will provide answers to many questions. For some applications, such as immunocytochemistry, three-dimensional reconstruction of serial sections or electron tomography, improved preservation of the ultrastructure is required. This review of nematode cryo-fixation highlights that cryo-fixation not only results in a superior preservation of fine structural details, but also underlines the fact that some observations based on results solely obtained through conventional fixation approaches were either incorrect, or otherwise had severe limitations. Although the use of cryo-fixation has hitherto been largely restricted to model organisms, the advantages of cryo-fixation are sufficiently self-evident that we must conclude that the cryo-fixation method is highly likely to become the standard for nematode fixation in the near future.
Collapse
Affiliation(s)
- Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dieter Slos
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Olivier Leroux
- Pteridology Research Group, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Nicolle O, Burel A, Griffiths G, Michaux G, Kolotuev I. Adaptation of Cryo-Sectioning for IEM Labeling of Asymmetric Samples: A Study Using Caenorhabditis elegans. Traffic 2015; 16:893-905. [PMID: 25858477 DOI: 10.1111/tra.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/17/2023]
Abstract
Cryo-sectioning procedures, initially developed by Tokuyasu, have been successfully improved for tissues and cultured cells, enabling efficient protein localization on the ultrastructural level. Without a standard procedure applicable to any sample, currently existing protocols must be individually modified for each model organism or asymmetric sample. Here, we describe our method that enables reproducible cryo-sectioning of Caenorhabditis elegans larvae/adults and embryos. We have established a chemical-fixation procedure in which flat embedding considerably simplifies manipulation and lateral orientation of larvae or adults. To bypass the limitations of chemical fixation, we have improved the hybrid cryo-immobilization-rehydration technique and reduced the overall time required to complete this procedure. Using our procedures, precise cryo-sectioning orientation can be combined with good ultrastructural preservation and efficient immuno-electron microscopy protein localization. Also, GFP fluorescence can be efficiently preserved, permitting a direct correlation of the fluorescent signal and its subcellular localization. Although developed for C. elegans samples, our method addresses the challenge of working with small asymmetric samples in general, and thus could be used to improve the efficiency of immuno-electron localization in other model organisms.
Collapse
Affiliation(s)
- Ophélie Nicolle
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS, Université de Rennes 1, F-35043, Rennes, France
| | - Agnès Burel
- Plateforme microscopie électronique MRic, Université de Rennes 1, UEB, SFR Biosit, UMS 'BIOSIT' CNRS 3480-INSERM 018, F-35043, Rennes, France
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Grégoire Michaux
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS, Université de Rennes 1, F-35043, Rennes, France.,Plateforme microscopie électronique MRic, Université de Rennes 1, UEB, SFR Biosit, UMS 'BIOSIT' CNRS 3480-INSERM 018, F-35043, Rennes, France
| | - Irina Kolotuev
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS, Université de Rennes 1, F-35043, Rennes, France.,Plateforme microscopie électronique MRic, Université de Rennes 1, UEB, SFR Biosit, UMS 'BIOSIT' CNRS 3480-INSERM 018, F-35043, Rennes, France
| |
Collapse
|
10
|
In Situ Nanocharacterization of Yeast Cells Using ESEM and FIB. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
McDonald KL. Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. PROTOPLASMA 2014; 251:429-448. [PMID: 24258967 DOI: 10.1007/s00709-013-0575-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today's structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.
Collapse
Affiliation(s)
- Kent L McDonald
- Electron Microscope Laboratory, University of California, 26 Giannini Hall, Berkeley, CA, 94720, USA,
| |
Collapse
|
12
|
McDonald KL. Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:152-163. [PMID: 24252586 DOI: 10.1017/s1431927613013846] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A variety of specimens including bacteria, ciliates, choanoflagellates (Salpingoeca rosetta), zebrafish (Danio rerio) embryos, nematode worms (Caenorhabditis elegans), and leaves of white clover (Trifolium repens) plants were high pressure frozen, freeze-substituted, infiltrated with either Epon, Epon-Araldite, or LR White resins, and polymerized. Total processing time from freezing to blocks ready to section was about 6 h. For epoxy embedding the specimens were freeze-substituted in 1% osmium tetroxide plus 0.1% uranyl acetate in acetone. For embedding in LR White the freeze-substitution medium was 0.2% uranyl acetate in acetone. Rapid infiltration was achieved by centrifugation through increasing concentrations of resin followed by polymerization at 100°C for 1.5-2 h. The preservation of ultrastructure was comparable to standard freeze substitution and resin embedding methods that take days to complete. On-section immunolabeling results for actin and tubulin molecules were positive with very low background labeling. The LR White methods offer a safer, quicker, and less-expensive alternative to Lowicryl embedding of specimens processed for on-section immunolabeling without traditional aldehyde fixatives.
Collapse
Affiliation(s)
- Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Abstract
In this chapter we discuss the latest developments in the field of high-pressure freezing (HPF). The Leica HPF machine EM HPM100 is discussed in detail due to significant changes compared to its predecessor model. Its centerpiece is a multipart polymer cartridge which holds the specimen carrier sandwich and guides it automatically through the freezing process until immersed in liquid nitrogen. The cartridge can be adapted to the specimen and carrier geometry to optimize the flow of liquid nitrogen and hence rapid cooling. Dedicated cartridges are available for a variety of different carriers, including carriers for samples of up to 5 mm in diameter. Cartridge-specific handling and carrier assemblies are described extensively for freezing samples in aluminum specimen carriers, cell cultures grown on Sapphire discs, suspensions for freeze-fracturing, and specimens for cryo-sectioning. Additionally, we include an advanced technique to freeze monolayer cell cultures on Sapphire discs with the Leica EM PACT2 HPF machine using a composite carrier.
Collapse
Affiliation(s)
- Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2011; 22:1-13. [PMID: 22018597 DOI: 10.1016/j.tcb.2011.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 02/04/2023]
Abstract
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.
Collapse
Affiliation(s)
- Jasper Weinberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
15
|
Abstract
Freeze substitution is a process for low temperature dehydration and fixation of rapidly frozen cells that usually takes days to complete. New methods for freeze substitution have been developed that require only basic laboratory tools: a platform shaker, liquid nitrogen, a metal block with holes for cryotubes and an insulated container such as an ice bucket. With this equipment, excellent freeze substitution results can be obtained in as little as 90 min for cells of small volume such as bacteria and tissue culture cells. For cells of greater volume or that have significant diffusion barriers such as cuticles or thick cell walls, one can extend the time to 3 h or more with dry ice. The 3-h method works well for all manner of specimens, including plants and Caenorhabditis elegans as well as smaller samples. Here, we present the basics of the techniques and some results from Nicotiana leaves, C. elegans adult worms, Escherichia coli and baby hamster kidney tissue culture cells.
Collapse
Affiliation(s)
- K L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
16
|
Shen Y, Nakajima M, Yang Z, Kojima S, Homma M, Fukuda T. Design and characterization of nanoknife with buffering beam for in situ single-cell cutting. NANOTECHNOLOGY 2011; 22:305701. [PMID: 21697582 DOI: 10.1088/0957-4484/22/30/305701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel nanoknife with a buffering beam is proposed for single-cell cutting. The nanoknife was fabricated from a commercial atomic force microscopy (AFM) cantilever by focused-ion-beam (FIB) etching technique. The material identification of the nanoknife was determined using the energy dispersion spectrometry (EDS) method. It demonstrated that the gallium ion pollution of the nanoknife can be ignored during the etching processes. The buffering beam was used to measure the cutting force based on its deformation. The spring constant of the beam was calibrated based on a referenced cantilever by using a nanomanipulation approach. The tip of the nanoknife was designed with a small edge angle 5° to reduce the compression to the cell during the cutting procedure. For comparison, two other nanoknives with different edge angles, i.e. 25° and 45°, were also prepared. An in situ single-cell cutting experiment was performed using these three nanoknives inside an environmental scanning electron microscope (ESEM). The cutting force and the sample slice angle for each nanoknife were evaluated. It showed the compression to the cell can be reduced when using the nanoknife with a small edge angle 5°. Consequently, the nanoknife was capable for in situ single-cell cutting tasks.
Collapse
Affiliation(s)
- Yajing Shen
- Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
18
|
Durán I, Marí-Beffa M, Santamaría JA, Becerra J, Santos-Ruiz L. Freeze substitution followed by low melting point wax embedding preserves histomorphology and allows protein and mRNA localization techniques. Microsc Res Tech 2010; 74:440-8. [PMID: 20830701 DOI: 10.1002/jemt.20929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/28/2010] [Indexed: 11/09/2022]
Abstract
Fixation and embedding are major steps in tissue preservation for histological analysis. However, conventional fixatives like aldehyde-based solutions usually mask tissular epitopes preventing their immunolocalization. Alternative fixation methods used to avoid this drawback, such as cryopreservation, alcohol- or zinc salts-based fixatives do not efficiently preserve tissue and cell morphology. Likewise, paraffin and resin embedding, commonly used for thin sectioning, frequently damage epitopes due to the clearing agents and high temperatures needed along the embedding procedure. Alternatives like cryosectioning avoid the embedding steps but yield sections of poorer quality and are not suitable for all kinds of samples. To overcome these handicaps, we have developed a method that preserves histoarchitecture as well as tissue antigenic properties. This method, which we have named CryoWax, involves freeze substitution of the samples in isopentane and methanol, followed by embedding in low melting point polyester wax. CryoWax has proven efficient in obtaining thin sections of embryos and adult tissues from different species, including amphioxus, zebrafish, and mouse. CryoWax sections displayed optimal preservation of tissue morphology and were successfully immunostained for fixation- and temperature-sensitive antigens. Furthermore, CryoWax has been tested for in situ hybridization application, obtaining positive results.
Collapse
Affiliation(s)
- Iván Durán
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Faculty of Sciences, Campus de Teatinos, Málaga 29071, Spain
| | | | | | | | | |
Collapse
|
19
|
Lamers E, Walboomers XF, Domanski M, McKerr G, O'Hagan BM, Barnes CA, Peto L, Luttge R, Winnubst LAJA, Gardeniers HJGE, Jansen JA. Cryo DualBeam Focused Ion Beam-Scanning Electron Microscopy to Evaluate the Interface Between Cells and Nanopatterned Scaffolds. Tissue Eng Part C Methods 2010; 17:1-7. [PMID: 20594113 DOI: 10.1089/ten.tec.2010.0251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the advance of nanotechnology in biomaterials science and tissue engineering, it is essential that new techniques become available to observe processes that take place at the direct interface between tissue and scaffold materials. Here, Cryo DualBeam focused ion beam-scanning electron microscopy (FIB-SEM) was used as a novel approach to observe the interactions between frozen hydrated cells and nanometric structures in high detail. Through a comparison of images acquired with transmission electron microscopy (TEM), conventional FIB-SEM operated at ambient temperature, and Cryo DualBeam FIB-SEM, the advantages and disadvantages of each technique were evaluated. Ultrastructural details of both (extra)cellular components and cell organelles were best observe with TEM. However, processing artifacts such as shrinkage of cells at the substrate interface were introduced in both TEM and conventional FIB-SEM. In addition, the cellular contrast in conventional FIB-SEM was low; consequently, cells were difficult to distinguish from the adjoining substrate. Cryo DualBeam FIB-SEM did preserve (extra)cellular details like the contour, cell membrane, and mineralized matrix. The three described techniques have proven to be complementary for the evaluation of processes that take place at the interface between tissue and substrate.
Collapse
Affiliation(s)
- Edwin Lamers
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This protocol describes the combination of in situ hybridization (ISH) with cryo-immunolabeling methods to allow the simultaneous detection at the ultrastructural level of mRNAs and proteins. The procedure consists of five steps and takes 4-5 d: (i) acquisition of ultrathin frozen sections of chemically fixed tissues or cells; (ii) hybridization of the sections with digoxigenin (DIG) or biotin-labeled RNA probes; (iii) detection of the bound probe with antibodies and protein A-gold (PAG); (iv) labeling of proteins of interest (optional); and (v) visualization by transmission electron microscopy (immuno-electron microscopy (IEM)). This technique allows the simultaneous detection of endogenous/overexpressed/injected RNAs and proteins while preserving the cell ultrastructure. The protocol is also suitable for mRNA detection on semi-thin frozen sections in combination with immunofluorescence. The localization of targeted transcripts, such as gurken and oskar mRNA in the Drosophila oocyte, and of structural elements and proteins that mediate their localization have been revealed using this technique.
Collapse
|
21
|
Graham HK, Hodson NW, Hoyland JA, Millward-Sadler SJ, Garrod D, Scothern A, Griffiths CEM, Watson REB, Cox TR, Erler JT, Trafford AW, Sherratt MJ. Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biol 2010; 29:254-60. [PMID: 20144712 PMCID: PMC2877882 DOI: 10.1016/j.matbio.2010.01.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 11/12/2022]
Abstract
Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae.
Collapse
Affiliation(s)
- Helen K Graham
- Unit of Cardiac Physiology, School of Biomedicine, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Salvenmoser W, Egger B, Achatz JG, Ladurner P, Hess MW. Electron microscopy of flatworms standard and cryo-preparation methods. Methods Cell Biol 2010; 96:307-30. [PMID: 20869529 DOI: 10.1016/s0091-679x(10)96014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron microscopy (EM) has long been indispensable for flatworm research, as most of these worms are microscopic in dimension and provide only a handful of characters recognizable by eye or light microscopy. Therefore, major progress in understanding the histology, systematics, and evolution of this animal group relied on methods capable of visualizing ultrastructure. The rise of molecular and cellular biology renewed interest in such ultrastructural research. In the light of recent developments, we offer a best-practice guide for users of transmission EM and provide a comparison of well-established chemical fixation protocols with cryo-processing methods (high-pressure freezing/freeze-substitution, HPF/FS). The organisms used in this study include the rhabditophorans Macrostomum lignano, Polycelis nigra and Dugesia gonocephala, as well as the acoel species Isodiametra pulchra.
Collapse
Affiliation(s)
- Willi Salvenmoser
- Center for Molecular Biosciences, Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
23
|
Fiserova J, Goldberg MW. Immunoelectron microscopy of cryofixed freeze-substituted Saccharomyces cerevisiae. Methods Mol Biol 2010; 657:191-204. [PMID: 20602217 DOI: 10.1007/978-1-60761-783-9_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Immunolabelling electron microscopy is a challenging technique with demands for perfect ultrastructural and antigen preservation. High-pressure freezing offers an ideal way to fix cellular structure. However, its use for immunolabelling has remained limited because of the low frequency of labelling due to loss of protein antigenicity or accessibility. Here we present a protocol for immunogold labelling of the yeast Saccharomyces cerevisiae that gives specific and multiple labelling while keeping the finest structural details. We use the protocol to reveal the organisation of individual nuclear pore complex proteins and the position of transport factors in the yeast S. cerevisiae in relation to actual transport events.
Collapse
Affiliation(s)
- Jindriska Fiserova
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | |
Collapse
|
24
|
Hess MW, Pfaller K, Ebner HL, Beer B, Hekl D, Seppi T. 3D versus 2D cell culture implications for electron microscopy. Methods Cell Biol 2010; 96:649-70. [PMID: 20869542 DOI: 10.1016/s0091-679x(10)96027-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell culture systems are indispensable tools for basic research and a wide range of clinical in vitro studies. However, conventional 2D cell cultures poorly mimic the conditions in the living organism. This limitation may seriously compromise the reliability and significance of data obtained from such approaches. Therefore, we present here a comparative study on selected 3D and 2D cell cultures of U87-MG human glioblastoma cells that were processed by means of high-pressure freezing and freeze-substitution as well as by conventional chemical fixation and Tokuyasu cryo-section immuno-labeling. Three-dimensional cultures comprised pseudo-vascularized cultures, fiber and bead scaffold cultures, and spheroid cultures. Cell cultures in dishes and on coverslips were the static 2D culture systems used as reference models. We will discuss morphological and immuno-cytochemical observations with respect to the feasibility of the cell culture systems investigated for the state-of-the-art electron microscopy.
Collapse
Affiliation(s)
- Michael W Hess
- Division of Histology and Embryology, Innsbruck Medical University, Innsbruck A-6020, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|