1
|
Bostan SA, Yemenoglu H, Kose O, Akyildiz K, Mercantepe T, Saral S, Tumkaya L, Yilmaz A. Preventive effects of melatonin on periodontal tissue destruction due to psychological stress in rats with experimentally induced periodontitis. J Periodontal Res 2024; 59:500-511. [PMID: 38214233 DOI: 10.1111/jre.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE AND BACKGROUND Psychological stress is a potential modifiable environmental risk factor causally related to the exacerbation of periodontitis and other chronic inflammatory diseases. This animal study aimed to investigate comprehensively the preventive efficacy of systemic melatonin administration on the possible effects of restraint stress on the periodontal structures of rats with periodontitis. METHODS Forty-eight male Sprague Dawley rats were randomly divided into six groups: control, restraint stress (S), S-melatonin (S-Mel), experimental periodontitis (Ep), S-Ep, and S-Ep-Mel. Periodontitis was induced by placing a 3.0 silk suture in a sub-paramarginal position around the cervix of the right and left lower first molars of the rats and keeping the suture in place for 5 weeks. Restraint stress was applied simultaneously by ligation. Melatonin and carriers were administered to the control, S, Ep, and S-Ep groups intraperitoneally (10 mg/body weight/day, 14 days) starting on day 21 following ligation and subjection to restraint stress. An open field test was performed on all groups on day 35 of the study. Periodontal bone loss was measured via histological sections. Histomorphometric and immunohistochemical (RANKL and OPG) evaluations were performed on right mandibular tissue samples and biochemical (TOS (total oxidant status), TAS (total antioxidant status), OSI (oxidative stress index), IL-1β, IL-10, and IL-1β/IL-10) evaluations were performed on left mandibular tissue samples. RESULTS Melatonin significantly limited serum corticosterone elevation related to restraint stress (p < .05). Restraint stress aggravated alveolar bone loss in rats with periodontitis, while systemic melatonin administration significantly reduced stress-related periodontal bone loss. According to the biochemical analyses, melatonin significantly lowered IL-1β/IL-10, OSI (TOS/TAS), and RANKL/OPG rates, which were significantly elevated in the S-Ep group. CONCLUSION Melatonin can significantly prevent the limited destructive effects of stress on periodontal tissues by suppressing RANKL-related osteoclastogenesis and oxidative stress.
Collapse
Affiliation(s)
- Semih Alperen Bostan
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hatice Yemenoglu
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Oğuz Kose
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Health Care Services, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
2
|
Caragea VM, Méndez-Couz M, Manahan-Vaughan D. Dopamine receptors of the rodent fastigial nucleus support skilled reaching for goal-directed action. Brain Struct Funct 2024; 229:609-637. [PMID: 37615757 PMCID: PMC10978667 DOI: 10.1007/s00429-023-02685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023]
Abstract
The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Marta Méndez-Couz
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
3
|
Zanelatto FB, Vieira WF, Nishijima CM, Zanotto TM, Magalhães SFD, Sartori CR, Parada CA, Tambeli CH. Effect of propranolol on temporomandibular joint pain in repeatedly stressed rats. Eur J Oral Sci 2024; 132:e12957. [PMID: 37908149 DOI: 10.1111/eos.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Stress substantially increases the risk of developing painful temporomandibular disorders (TMDs) by influencing the release of endogenous catecholamines. Propranolol, an antagonist of β-adrenergic receptors, has shown potential in alleviating TMD-associated pain, particularly when the level of catecholamines is elevated. The aim of this study was to explore whether intra-articular propranolol administration is effective in diminishing temporomandibular joint (TMJ) pain during repeated stress situations. Additionally, we investigated the effect of repeated stress on the expression of genes encoding β-adrenoceptors in the trigeminal ganglion. In the present study, rats were exposed to a stress protocol induced by sound, then to the administration of formalin in the TMJ (to elicit a nociceptive response), followed immediately afterward by different doses of propranolol, after which the analgesic response to propranolol was evaluated. We also assessed the levels of beta-1 and beta-2 adrenergic receptor mRNAs (Adrb1 and Adrb2, respectively) using reverse transcription-quantitative PCR (RT-qPCR). Our findings revealed that propranolol administration reduces formalin-induced TMJ nociception more effectively in stressed rats than in non-stressed rats. Furthermore, repeated stress decreases the expression of the Adrb2 gene within the trigeminal ganglion. The findings of this study are noteworthy as they suggest that individuals with a chronic stress history might find potential benefits from β-blockers in TMD treatment.
Collapse
Affiliation(s)
- Fernanda Barchesi Zanelatto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | | | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Tamires Marques Zanotto
- Department of Internal Medicine, School of Medical Science, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Silviane Fernandes de Magalhães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - César Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Liu C, Shi R, Liu Y, Zhao X, Zhang X, Wang H, Wu L, Shang X. Low-frequency transcranial magnetic stimulation protects cognition in mice with chronic unpredictable mild stress through autophagy regulation. Behav Brain Res 2023; 444:114366. [PMID: 36854362 DOI: 10.1016/j.bbr.2023.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/29/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023]
Abstract
Although transcranial magnetic stimulation (TMS) has been approved for the treatment of major depression, few studies have analyzed the ability of low-frequency TMS (LF-TMS) to treat depressive symptoms. Our study confirmed that LF-TMS protects the cognitive function,which can play a certain reference role in the future clinical treatment. The effectiveness of high-frequency TMS therapy has been well documented. However, the use of low-frequency TMS (LF-TMS) in the treatment of depression is rarely reported. This study aims to evaluate whether LF-TMS can reverse depression-induced cognitive impairment. We created a mouse model of depression using the chronic unpredictable mild stress (CUMS) paradigm. Male C57BL/6J mice,6-8 weeks old,were randomly divided into four groups: a CON (control) group, a CUMS group, a CUMS+LF-TMS group, and a CUMS+LF-TMS+RAP (rapamycin) group. The CUMS was maintained for 28 days. LF-TMS (1 Hz) and Rap were administered for 28 days from the first day of CUMS. The mice in all groups except the control demonstrated evidence of anhedonia, anxiety, and cognitive decline on behavioral tests during the four weeks of CUMS.All the experiments were carried out under a 12-h light/dark cycle (lights on at 7 a.m.) except for the dark/light cycle reversal stimulation of CUMS. LF-TMS at 20 Mt, 1 Hz for 1 min alleviated damage to spatial cognition and synaptic plasticity in the hippocampus. Western blot analysis showed that LF-TMS reduced the down-regulation of autophagy signals in the CUMS+LF-TMS group, and enhanced the expression of synaptic plasticity-related factors, thereby improving the spatial cognitive impairment resulting from the CUMS. We concluded that LF-TMS can effectively relieve depressive behavior and cognitive dysfunction in mice subjected to CUMS by regulating autophagy signals and synaptic proteins.
Collapse
Affiliation(s)
- Chuan Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China; College of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Ruidie Shi
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Yuting Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiangwei Zhao
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiujun Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| | - Haitao Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China; College of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| | - Lei Wu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| |
Collapse
|
5
|
Akbari S, Hooshmandi E, Bayat M, Borhani Haghighi A, Salehi MS, Pandamooz S, Yousefi Nejad A, Haghani M. The neuroprotective properties and therapeutic potential of epidermal neural crest stem cells transplantation in a rat model of vascular dementia. Brain Res 2021; 1776:147750. [PMID: 34896332 DOI: 10.1016/j.brainres.2021.147750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.
Collapse
Affiliation(s)
- Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Department of Veterinary Medicine, Faculty of Veterinary Medicine. Islamic Azad University of Kazeroon, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Taghadosi Z, Zarifkar A, Razban V, Owjfard M, Aligholi H. Effect of chronically electric foot shock stress on spatial memory and hippocampal blood brain barrier permeability. Behav Brain Res 2021; 410:113364. [PMID: 33992668 DOI: 10.1016/j.bbr.2021.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Maintaining blood-brain barrier (BBB) contributes critically to preserving normal brain functions. According to the available evidence, intense or chronic exposure to stress would potentially affect different brain structures, such as the hippocampus, negatively. The purpose of this study was to define the relationship between the BBB permeability of the hippocampus and the performance of spatial learning and memory under chronically electric foot shock stress. Sixteen rats were divided into the control and stress groups equally. Animals in the stress group were exposed to foot shock (1 mA, 1 Hz) for 10-s duration every 60 s (1 h/day) for 10 consecutive days. The anxiety-related behavior, spatial learning, and memory were assessed by an Open Field (OF) and the Morris Water Maze (MWM) respectively. The hippocampal BBB permeability was determined by Evans blue penetration assay. Our results demonstrated that the stress model not only increased locomotor activities in the OF test but reduced spatial learning and memory in MWM. Moreover, these effects coincided with a significant increase in hippocampal BBB permeability. In sum, the stress model can be used in future studies focusing on the relationship between stress and BBB permeability of the hippocampus.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
WANG H, XING X, WANG H. Propranolol rescued secondary trauma induced by immediate extinction. ACTA PSYCHOLOGICA SINICA 2021. [DOI: 10.3724/sp.j.1041.2021.00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Símaro GV, Lemos M, Mangabeira da Silva JJ, Ribeiro VP, Arruda C, Schneider AH, Wagner de Souza Wanderley C, Carneiro LJ, Mariano RL, Ambrósio SR, Faloni de Andrade S, Banderó-Filho VC, Sasse A, Sheridan H, Andrade E Silva ML, Bastos JK. Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113883. [PMID: 33508366 DOI: 10.1016/j.jep.2021.113883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera species folkloric names are "copaíbas, copaibeiras, copaívas or oil stick", which are widely used in Brazilian folk medicine. Among all ethnopharmacological applications described for Copaifera spp oleoresins, their anti-inflammatory effect stands out. However, the knowledge of anti-inflammatory and antinociceptive properties of Copaifera pubiflora Benth is scarce. AIM OF THE STUDY To investigate the cytotoxic, anti-inflammatory, and antinociceptive activities of C. pubiflora oleoresin (CPO), and its major compound ent-hardwickiic acid (HA). MATERIAL AND METHODS The phosphatase assay was used to evaluate the cytotoxicity of CPO and HA in three different cell lines. CPO and HA doses of 1, 3, and 10 mg/kg were employed in the biological assays. The assessment of motor activity was performed using open-field and rotarod tests. Anti-inflammatory activity of CPO and HA was assessed through luciferase assay, measurement of INF-γ, IL-1β, IL-6, IL-10, and TNF-α in a multi-spot system with the immortalized cell line THP-1, zymosan-induced arthritis, and carrageenan-induced paw edema. Acetic acid-induced abdominal writhing and formalin tests were undertaken to evaluate the antinociceptive potential of CPO and HA. In addition, the evaluation using carrageenan was performed to investigate the effect of CPO in pain intensity to a mechanical stimulus (mechanical hyperalgesia), using the von Frey filaments. A tail-flick test was used to evaluate possible central CPO and HA actions. RESULTS In the cytotoxicity evaluation, CPO and HA were not cytotoxic to the cell lines tested. CPO and HA (10 mg/kg) did not affect animals' locomotor capacity in both open-field and rotarod tests. In the luciferase assay, CPO and HA significantly reduced luciferase activity (p < 0.05). This reduction indicates a decrease in NF-κB activity. HA and CPO decreased INF-γ, IL-1β, IL-6, IL-10, and TNF-α at 24 and 72 h in the multi-spot system. In zymosan-induced arthritis, CPO and HA decreased the number of neutrophils in the joint of arthritic mice and the number of total leukocytes (p < 0.05). In experimental arthritis HA significantly decreased joint swelling (p < 0.05). CPO and HA also increased the mechanical threshold during experimental arthritis. HA and CPO significantly inhibited the carrageenan-induced paw edema, being the doses of 10 mg/kg the most effective, registering maximum inhibitions of 58 ± 8% and 76 ± 6% respectively, p < 0.05. CPO and HA reduced the nociceptive behavior in both phases of formalin at all tested doses. The highest doses tested displayed inhibitions of 87 ± 1% and 72 ± 4%, respectively, p < 0.001, in the first phase, and 87 ± 1% and 81 ± 2%, respectively, p < 0.001, in the second phase. Oral treatment of CPO and HA (1, 3, 10 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhings, and the 10 mg/kg dose was the most effective with maximum inhibitions of 86 ± 2% and 82 ± 1%, respectively, p < 0.001. Both HA and CPO significantly decreased the intensity of mechanical inflammatory hyper-nociception on carrageenan-induced hyperalgesia at all tested doses, and 10 mg/kg was the most effective dose with maximum inhibitions of 73 ± 5% and 74 ± 7%, respectively, p < 0.05.CPO increased the tail-flick latencies in mice, and concomitant administration of naloxone partially reduced its effect. CONCLUSIONS CPO and HA may inhibit the production of inflammatory cytokines by suppressing the NF-κB signaling pathway, resulting in anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Ayda Henriques Schneider
- Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes S/N, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiza Junqueira Carneiro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Roberta Lopes Mariano
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Faloni de Andrade
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Vilmar C Banderó-Filho
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Márcio Luis Andrade E Silva
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Gargas NM, Ethridge VT, Miklasevich MK, Rohan JG. Altered hippocampal function and cytokine levels in a rat model of Gulf War illness. Life Sci 2021; 274:119333. [PMID: 33705732 DOI: 10.1016/j.lfs.2021.119333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023]
Abstract
AIMS Gulf War illness (GWI) is a disorder affecting military personnel deployed in the Gulf War (GW) from 1990 to 1991. Here, we will use a rat model of GWI to evaluate hippocampal function and cytokine levels. MATERIALS AND METHODS Rats were exposed to diethyltoluamide and permethrin via dermal absorption and pyridostigmine bromide via gavage with or without a 5-min restraint for 28 days. Immediate and delayed effects of GW chemical exposure were evaluated using electrophysiology to quantitate hippocampal function, behavioral tests to assess cognitive effects and biochemical assays to measure neurotransmitter and cytokine levels. KEY FINDINGS Behavioral data revealed a statistically significant increase in motor activity at 3 months following completion of exposures, potentially indicating increased excitability, and/or restlessness. Electrophysiology data revealed statistically significant changes in paired pulse facilitation and input-output function of CA1 hippocampal neurons within 24 h and 3 months following completion of exposures. There was also a statistically significant reduction in the frequency of spontaneous firing activity of hippocampal neurons within 24 h following exposures. Naïve hippocampal slices directly incubated in GW chemicals also resulted in similar changes in electrophysiological parameters. Biochemical measurements revealed reduced hippocampal glutamate level at 3 months post-exposure. Furthermore, there was a statistically significant increase in plasma and hippocampal levels of IL-13, as well as decrease in plasma level of IL-1β. SIGNIFICANCE Our data support an effect on glutamate signaling within the hippocampus as indicated by changes in PPF and hippocampal level of glutamate, with some activation of T helper type 2 immune response.
Collapse
Affiliation(s)
- Nathan M Gargas
- Naval Medical Research Unit Dayton, 2728 Q Street, Area B, Building 837, WPAFB, OH 45433, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Odyssey Systems Consulting Group, Ltd, 201 Edgewater Drive Suite 270, Wakefield, MA 01880, USA
| | - Victoria T Ethridge
- Naval Medical Research Unit Dayton, 2728 Q Street, Area B, Building 837, WPAFB, OH 45433, USA; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Molly K Miklasevich
- Naval Medical Research Unit Dayton, 2728 Q Street, Area B, Building 837, WPAFB, OH 45433, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Joyce G Rohan
- Naval Medical Research Unit Dayton, 2728 Q Street, Area B, Building 837, WPAFB, OH 45433, USA.
| |
Collapse
|
10
|
Aouichat S, Chayah M, Bouguerra-Aouichat S, Agil A. Time-Restricted Feeding Improves Body Weight Gain, Lipid Profiles, and Atherogenic Indices in Cafeteria-Diet-Fed Rats: Role of Browning of Inguinal White Adipose Tissue. Nutrients 2020; 12:E2185. [PMID: 32717874 PMCID: PMC7469029 DOI: 10.3390/nu12082185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Time-restricted feeding (TRF) showed a potent effect in preventing obesity and improving metabolicoutcomes in several animal models of obesity. However, there is, as of yet, scarce evidence concerning its effectiveness against obesogenic challenges that more accurately mimic human Western diets, such as the cafeteria diet. Moreover, the mechanism for its efficacy is poorly understood. White adipose browning has been linked to body weight loss. Herein, we tested whether TRF has the potential to induce browning of inguinal white adipose tissue (iWAT) and to attenuate obesity and associated dyslipidemia in a cafeteria-diet-induced obesity model. Male Wistar rats were fed normal laboratory chow (NC) or cafeteria diet (CAF) for 16 weeks and were subdivided into two groups that were subjected to either ad libitum (ad lib, A) or TRF (R) for 8 h per day. Rats under the TRF regimen had a lower body weight gain and adiposity than the diet-matchedad lib rats, despite equivalent levels of food intake and locomotor activity. In addition, TRF improved the deranged lipid profile (total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL-c), low-density lipoprotein (LDL-c)) and atherogenic indices (atherogenic index of plasma (AIP), atherogenic coefficient (AC), coronary risk index (CRI) in CAF-fed rats. Remarkably, TRF resulted in decreased size of adipocytes and induced emergence of multilocular brown-like adipocytes in iWAT of NC- and CAF-fed rats. Protein expression of browning markers, such as uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), were also up-regulated in the iWAToftime-restricted NC- or CAF-fed rats. These findings suggest that a TRF regimen is an effective strategy to improve CAF diet-induced obesity, probably via a mechanismthe involving WAT browning process.
Collapse
Affiliation(s)
- Samira Aouichat
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Meriem Chayah
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| | - Souhila Bouguerra-Aouichat
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| |
Collapse
|
11
|
Neuroprotective efficacy of different levels of high-frequency repetitive transcranial magnetic stimulation in mice with CUMS-induced depression: Involvement of the p11/BDNF/Homer1a signaling pathway. J Psychiatr Res 2020; 125:152-163. [PMID: 32289652 DOI: 10.1016/j.jpsychires.2020.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is widely used to treat depression. However, the underlying mechanism has not been identified, and there is uncertainty regarding the optimal choice of stimulus parameters, especially stimulus frequency. Our previous study in mice demonstrated that 10-Hz HF-rTMS ameliorated depression by inducing expression of Homer1a and reducing excitability of cortical pyramidal cells. The aims of this study were to compare the effects of 15-Hz and 25-Hz HF-rTMS in a model of chronic unpredictable mild stress (CUMS)-induced depression and investigate its possible molecular mechanism. Male C57BL/6J mice were treated with CUMS for 28 days followed by 15-Hz and 25-Hz rTMS for 4 weeks. The sucrose preference, open field, forced swimming, and tail suspension tests were used to evaluate depression-like behaviors. Immunostaining was performed to measure neuronal loss and neurogenesis. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. Expression of synapse-related proteins and the effects of HF-rTMS on the signaling pathway were examined using Western blot. The results showed that both 15-Hz and 25-Hz rTMS had significant antidepressant effects; 15-Hz rTMS seemed to be more effective than 25-Hz rTMS in preventing neuronal loss and promoting neurogenesis, while 25-Hz rTMS was superior to 15-Hz rTMS in facilitating synaptic plasticity. We also found that 15-Hz and 25-Hz rTMS markedly increased expression of p11, BDNF, Homer1a, and p-trkB proteins. These findings suggest that 15-Hz and 25-Hz HF-rTMS could exert neuroprotective effects to different degrees via multiple perspectives, which at least in part involve the p11/BDNF/Homer1a pathway.
Collapse
|
12
|
TLR4-NF- κB Signal Involved in Depressive-Like Behaviors and Cytokine Expression of Frontal Cortex and Hippocampus in Stressed C57BL/6 and ob/ob Mice. Neural Plast 2018; 2018:7254016. [PMID: 29765402 PMCID: PMC5885403 DOI: 10.1155/2018/7254016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022] Open
Abstract
Studies found that elevated levels of cytokines such as interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) are closely associated with the pathogenesis of depression. Obesity providing a low-grade inflammation state was proposed to be implicated in susceptibility to depression in obesity. However, the alterations of cytokines and the TLR4-NF-κB signal in the brain of normal-weight and obese mice under stress have not been fully elucidated. This study used chronic unpredictable mild stress (CUMS) to induce a depressive-like behavior in an animal model and examine depressive-like behaviors, memory changes, and serum corticosterone levels, as well as the expressions of cytokines and NF-κB in the frontal cortex and hippocampus. We aimed to observe the role of neuroinflammation in susceptibility to depression in obesity under CUMS. In addition, we investigated the protective effect of inhibiting the TLR4-NF-κB signal. Our results demonstrated that CUMS induced depressive-like behavior and spatial memory damage, higher level of serum corticosterone, and overexpression of cytokines and NF-κB in the frontal cortex and hippocampus in both C57BL/6 and ob/ob mice. ob/ob mice displayed serious behavioral disorder and higher levels of IL-1β, IL-6, TNF-α, and NF-κB. Our results concluded that a hyperactive TLR4-NF-κB signal and higher level of cytokines are involved in susceptibility to depression in stressed obese mice.
Collapse
|
13
|
Xiao X, Shang X, Zhai B, Zhang H, Zhang T. Nicotine alleviates chronic stress-induced anxiety and depressive-like behavior and hippocampal neuropathology via regulating autophagy signaling. Neurochem Int 2018; 114:58-70. [PMID: 29339018 DOI: 10.1016/j.neuint.2018.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 01/24/2023]
Abstract
Recently, we reported that chronic nicotine significantly improved chronic stress-induced impairments of cognition and the hippocampal synaptic plasticity in mice, however, the underlying mechanism still needs to be explored. In the present study, 32 male C57BL/6 mice were divided into four groups: control (CON), stress (CUS), stress with chronic nicotine administration (CUS + Nic) and chronic nicotine administration (Nic). The anxiety-like behavior and neuropathological alteration of DG neurons were examined. Moreover, PC12 cells were examined with corticosterone in the presence or absence of nicotine. Both cell viability and apoptosis were determined. When treated simultaneously with an unpredictable chronic mild stress (CUS), nicotine (0.2 mg/kg/d) attenuated behavioral deficits and neuropathological alterations of DG neurons. Moreover, Western blotting showed that chronic nicotine also elevated the level of autophagy makers including Beclin-1 and LC3 II triggered by CUS. In addition, concomitant treatment with nicotine (10 μM) significantly attenuated the loss of PC12 cell viability (p < .01) and apoptosis compared to that of corticosterone treatment alone. Besides, chronic nicotine also enhanced the protein and RNA expression levels of autophagy makers triggered by corticosterone, such as Beclin-1, LC3 II and p62/SQSTM1. However, the above improvements were significantly blocked by autophagy inhibitor 3-MA. Importantly, the activation of the PI3K/Akt/mTOR signaling was carefully tested to illuminate the effects of chronic nicotine. Consequently, chronic nicotine played a role of neuroprotection in either CUS mice or corticosterone cells associating with the enhancement of the autophagy signaling, which was involved in activating the PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Xi Xiao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Xueliang Shang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Baohui Zhai
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Hui Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| |
Collapse
|
14
|
Zhang L, Gan W, An G. Influence of Tanshinone IIa on heat shock protein 70, Bcl-2 and Bax expression in rats with spinal ischemia/reperfusion injury. Neural Regen Res 2014; 7:2882-8. [PMID: 25317140 PMCID: PMC4190946 DOI: 10.3969/j.issn.1673-5374.2012.36.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/04/2022] Open
Abstract
Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection.
Collapse
Affiliation(s)
- Li Zhang
- School of Traumatology and Orthopedics, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian Province, China
| | - Weidong Gan
- School of Traumatology and Orthopedics, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian Province, China
| | - Guoyao An
- School of Traumatology and Orthopedics, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian Province, China
| |
Collapse
|
15
|
Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol 2014; 6:126-35. [PMID: 24678249 PMCID: PMC3967438 DOI: 10.2478/intox-2013-0020] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022] Open
Abstract
In various areas of the bio-medical, pharmacological and psychological research a multitude of behavioural tests have been used to investigate the effects of environmental, genetic and epi-genetic factors as well as pharmacological substances or diseased states on behaviour and thus on the physiological and psycho-social status of experimental subjects. This article is reviewing the most frequently used behavioural tests in animal research (open field, elevated plus maze, zero maze, and black and white box). It provides a summary of common characteristics as well as differences in the methods used in various studies to determine motor activity, anxiety and emotionality. Additionally to methodological aspects, strain, sex and stress-related differences as well as the involvement of nitric oxide in modulation of motor activity and anxiety of rodents were briefly reviewed.
Collapse
|