1
|
Falahati H, Wu Y, Feuerer V, Simon HG, De Camilli P. Proximity proteomics of synaptopodin provides insight into the molecular composition of the spine apparatus of dendritic spines. Proc Natl Acad Sci U S A 2022; 119:e2203750119. [PMID: 36215465 PMCID: PMC9586327 DOI: 10.1073/pnas.2203750119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023] Open
Abstract
The spine apparatus is a specialized compartment of the neuronal smooth endoplasmic reticulum (ER) located in a subset of dendritic spines. It consists of stacks of ER cisterns that are interconnected by an unknown dense matrix and are continuous with each other and with the ER of the dendritic shaft. While this organelle was first observed over 60 y ago, its molecular organization remains a mystery. Here, we performed in vivo proximity proteomics to gain some insight into its molecular components. To do so, we used the only known spine apparatus-specific protein, synaptopodin, to target a biotinylating enzyme to this organelle. We validated the specific localization in dendritic spines of a small subset of proteins identified by this approach, and we further showed their colocalization with synaptopodin when expressed in nonneuronal cells. One such protein is Pdlim7, an actin binding protein not previously identified in spines. Pdlim7, which we found to interact with synaptopodin through multiple domains, also colocalizes with synaptopodin on the cisternal organelle, a peculiar stack of ER cisterns resembling the spine apparatus and found at axon initial segments of a subset of neurons. Moreover, Pdlim7 has an expression pattern similar to that of synaptopodin in the brain, highlighting a functional partnership between the two proteins. The components of the spine apparatus identified in this work will help elucidate mechanisms in the biogenesis and maintenance of this enigmatic structure with implications for the function of dendritic spines in physiology and disease.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Vanessa Feuerer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children’s Research Institute, Chicago, IL 60611
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
2
|
Paget-Blanc V, Pfeffer ME, Pronot M, Lapios P, Angelo MF, Walle R, Cordelières FP, Levet F, Claverol S, Lacomme S, Petrel M, Martin C, Pitard V, De Smedt Peyrusse V, Biederer T, Perrais D, Trifilieff P, Herzog E. A synaptomic analysis reveals dopamine hub synapses in the mouse striatum. Nat Commun 2022; 13:3102. [PMID: 35660742 PMCID: PMC9166739 DOI: 10.1038/s41467-022-30776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named “dopamine hub synapses”. At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity. The neurotransmitter dopamine is an important regulator of brain function. Here the authors describe “dopamine hub synapses”, where dopamine transmission may act in synergy with other neurotransmitters.
Collapse
Affiliation(s)
- Vincent Paget-Blanc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Marlene E Pfeffer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Marie Pronot
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Paul Lapios
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Maria-Florencia Angelo
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Roman Walle
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Fabrice P Cordelières
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Florian Levet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.,Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | | | - Sabrina Lacomme
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Mélina Petrel
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Christelle Martin
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Vincent Pitard
- UB'FACSility CNRS UMS 3427, INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France
| | | | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - David Perrais
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Pierre Trifilieff
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Etienne Herzog
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Lenz M, Eichler A, Kruse P, Muellerleile J, Deller T, Jedlicka P, Vlachos A. All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells. eLife 2021; 10:71983. [PMID: 34723795 PMCID: PMC8560091 DOI: 10.7554/elife.71983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
Previously we showed that the vitamin A metabolite all-trans retinoic acid (atRA) induces synaptic plasticity in acute brain slices prepared from the mouse and human neocortex (Lenz et al., 2021). Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported. Here, we used intraperitoneal injections of atRA (10 mg/kg) in adult C57BL/6J mice to study the effects of atRA on excitatory and inhibitory neurotransmission in the mouse fascia dentata—a brain region implicated in memory acquisition. No major changes in synaptic transmission were observed in the ventral hippocampus while a significant increase in both spontaneous excitatory postsynaptic current frequencies and synapse numbers were evident in the dorsal hippocampus 6 hr after atRA administration. The intrinsic properties of hippocampal dentate granule cells were not significantly different and hippocampal transcriptome analysis revealed no essential neuronal changes upon atRA treatment. In light of these findings, we tested for the metaplastic effects of atRA, that is, for its ability to modulate synaptic plasticity expression in the absence of major changes in baseline synaptic strength. Indeed, in vivo long-term potentiation (LTP) experiments demonstrated that systemic atRA treatment improves the ability of dentate granule cells to express LTP. The plasticity-promoting effects of atRA were not observed in synaptopodin-deficient mice, therefore, extending our previous results regarding the relevance of synaptopodin in atRA-mediated synaptic strengthening in the mouse prefrontal cortex. Taken together, our data show that atRA mediates synaptopodin-dependent metaplasticity in mouse dentate granule cells.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany.,ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Obashi K, Taraska JW, Okabe S. The role of molecular diffusion within dendritic spines in synaptic function. J Gen Physiol 2021; 153:e202012814. [PMID: 33720306 PMCID: PMC7967910 DOI: 10.1085/jgp.202012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Kazuki Obashi
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Gürth CM, Dankovich TM, Rizzoli SO, D'Este E. Synaptic activity and strength are reflected by changes in the post-synaptic secretory pathway. Sci Rep 2020; 10:20576. [PMID: 33239744 PMCID: PMC7688657 DOI: 10.1038/s41598-020-77260-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Neurons are highly asymmetric cells that span long distances and need to react promptly to local demands. Consequently, neuronal secretory pathway elements are distributed throughout neurites, specifically in post-synaptic compartments, to enable local protein synthesis and delivery. Whether and how changes in local synaptic activity correlate to post-synaptic secretory elements is still unclear. To assess this, we used STED nanoscopy and automated quantitative image analysis of post-synaptic markers of the endoplasmic reticulum, ER-Golgi intermediate compartment, trans-Golgi network, and spine apparatus. We found that the distribution of these proteins was dependent on pre-synaptic activity, measured as the amount of recycling vesicles. Moreover, their abundance correlated to both pre- and post-synaptic markers of synaptic strength. Overall, the results suggest that in small, low-activity synapses the secretory pathway components are tightly clustered in the synaptic area, presumably to enable rapid local responses, while bigger synapses utilise secretory machinery components from larger, more diffuse areas.
Collapse
Affiliation(s)
- Clara-Marie Gürth
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Tal M Dankovich
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Maggio N, Vlachos A. Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores. J Mol Med (Berl) 2018; 96:1039-1047. [PMID: 30073573 DOI: 10.1007/s00109-018-1674-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
The role of inflammatory signaling pathways in synaptic plasticity has long been identified. Yet, it remains unclear how inflammatory cytokines assert their pleiotropic effects on neural plasticity. Moreover, the neuronal targets through which inflammatory cytokines assert their effects on plasticity remain not well-understood. In an attempt to learn more about the plasticity-modulating effects of the pro-inflammatory cytokine tumor necrosis factor (TNF), we used two-pathway long-term potentiation (LTP) experiments at Schaffer collateral-CA1 synapses to test for concentration-dependent effects of TNF on synaptic plasticity. We report that high concentrations of TNF (1 μg/mL) impair the ability of mouse CA1 pyramidal neurons to express synaptic plasticity without affecting baseline synaptic transmission and/or previously established LTP. Interestingly, 100 ng/mL of TNF has no apparent effect on LTP, while low concentrations (1 ng/mL) promote the ability of neurons to express LTP. These dose-dependent metaplastic effects of TNF are modulated by intracellular calcium stores: Pharmacological activation of intracellular calcium stores with ryanodine (10 μM) reverses the negative effects of TNF[high], and the plasticity-promoting effects of TNF[low] are blocked when intracellular calcium stores are depleted with thapsigargin (1 μM). Consistent with this result, TNF does not promote plasticity in synaptopodin-deficient preparations, which show deficits in neuronal calcium store-mediated synaptic plasticity. Thus, we propose that TNF mediates its pleiotropic effects on synaptic plasticity in a concentration-dependent manner through signaling pathways that are modulated by intracellular calcium stores and require the presence of synaptopodin. These results demonstrate that TNF can act as mediator of metaplasticity, which is of considerable relevance in the context of brain diseases associated with increased TNF levels and alterations in synaptic plasticity. KEY MESSAGES • TNF modulates the ability of neurons to express synaptic plasticity. • High concentrations of TNF impair synaptic plasticity. • Low concentrations of TNF improve synaptic plasticity. • TNF does not affect previously established long-term potentiation. • Plasticity effects of TNF are modulated by intracellular calcium stores.
Collapse
Affiliation(s)
- Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, 52621, Ramat Gan, Israel. .,Department of Neurology, The Chaim Sheba Medical Center, 52621, Tel HaShomer, Israel. .,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621, Tel HaShomer, Israel. .,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 52621, Tel Aviv, Israel.
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Aging is associated with a mild acidification in neocortical human neurons in vitro. J Neural Transm (Vienna) 2018; 125:1495-1501. [PMID: 29995171 DOI: 10.1007/s00702-018-1904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
The intracellular pH (pHi) in the cytosol of mammalian central neurons is tightly regulated and small pHi-fluctuations are deemed to modulate inter-/intracellular signaling, excitability, and synaptic plasticity. The resting pHi of young rodent hippocampal pyramidal neurons is known to decrease alongside aging for about 0.1 pH-units. There is no information about the relationship between age and pHi of human central neurons. We addressed this knowledge gap using 26 neocortical slices from 12 patients (1-56-years-old) who had undergone epilepsy surgery. For fluorometric recordings, the slice-neurons were loaded with the pHi-sensitive dye BCECF-AM. We found that the pyramidal cells' resting pHi (n = 26) descended linearly alongside aging (r = - 0.71, p < 0.001). This negative relationship persisted, when the sample was confined to specific brain regions (i.e., middle temporal gyrus, 23 neurons, r = - 0.68, p < 0.001) or pathologies (i.e., hippocampus sclerosis, 8 neurons, r = - 0.78, p = 0.02). Specifically, neurons (n = 9, pHi 7.25 ± 0.12) from young children (1.5 ± 0.46-years-old) were significantly more alkaline than neurons from adults (n = 17, 38.53 ± 12.38 years old, pHi 7.08 ± 0.07, p < 0.001). Although the samples were from patients with different pathologies the results were in line with those from the rodent hippocampal pyramidal neurons. Like a hormetin, the age-related mild pHi-decrease might contribute to neuroprotection, e.g., via limiting excitotoxicity. On the other hand, aging cortical neurons could become more vulnerable to metabolic overstress by a successive pHi-decrease. Certainly, its impact for the dynamics in short and long-term synaptic plasticity and, ultimately, learning and memory provides a challenge for further research.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany. .,Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dieter Bingmann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany.,IBE R&D gGmbH, Institute for Lung Health, 48149, Münster, Germany
| |
Collapse
|
8
|
Elramah S, López-González MJ, Bastide M, Dixmérias F, Roca-Lapirot O, Wielanek-Bachelet AC, Vital A, Leste-Lasserre T, Brochard A, Landry M, Favereaux A. Spinal miRNA-124 regulates synaptopodin and nociception in an animal model of bone cancer pain. Sci Rep 2017; 7:10949. [PMID: 28887457 PMCID: PMC5591226 DOI: 10.1038/s41598-017-10224-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/07/2017] [Indexed: 01/15/2023] Open
Abstract
Strong breakthrough pain is one of the most disabling symptoms of cancer since it affects up to 90% of cancer patients and is often refractory to treatments. Alteration in gene expression is a known mechanism of cancer pain in which microRNAs (miRNAs), a class of non-coding regulatory RNAs, play a crucial role. Here, in a mouse model of cancer pain, we show that miR-124 is down-regulated in the spinal cord, the first relay of the pain signal to the brain. Using in vitro and in vivo approaches, we demonstrate that miR-124 is an endogenous and specific inhibitor of synaptopodin (Synpo), a key protein for synaptic transmission. In addition, we demonstrate that Synpo is a key component of the nociceptive pathways. Interestingly, miR-124 was down-regulated in the spinal cord in cancer pain conditions, leading to an up-regulation of Synpo. Furthermore, intrathecal injections of miR-124 mimics in cancerous mice normalized Synpo expression and completely alleviated cancer pain in the early phase of the cancer. Finally, miR-124 was also down-regulated in the cerebrospinal fluid of cancer patients who developed pain, suggesting that miR-124 could be an efficient analgesic drug to treat cancer pain patients.
Collapse
Affiliation(s)
- Sara Elramah
- Bordeaux University, Bordeaux, France.,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | - María José López-González
- Bordeaux University, Bordeaux, France.,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | - Matthieu Bastide
- Bordeaux University, Bordeaux, France.,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | | | - Olivier Roca-Lapirot
- Bordeaux University, Bordeaux, France.,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | | | - Anne Vital
- Univ. Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, F-33000, France
| | - Thierry Leste-Lasserre
- INSERM U862 « Physiopathologie de l'addiction », Institut François Magendie, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | - Alexandre Brochard
- INSERM U862 « Physiopathologie de l'addiction », Institut François Magendie, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | - Marc Landry
- Bordeaux University, Bordeaux, France.,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France
| | - Alexandre Favereaux
- Bordeaux University, Bordeaux, France. .,CNRS UMR 5297 « Central mechanisms of pain sensitization », Institut Interdisciplinaire de Neuroscience, 146 rue Léo Saignat, Bordeaux Cedex, 33077, France.
| |
Collapse
|
9
|
Jedlicka P, Deller T. Understanding the role of synaptopodin and the spine apparatus in Hebbian synaptic plasticity - New perspectives and the need for computational modeling. Neurobiol Learn Mem 2016; 138:21-30. [PMID: 27470091 DOI: 10.1016/j.nlm.2016.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 12/17/2022]
Abstract
Synaptopodin (SP) is a proline-rich actin-associated protein essential for the formation of a spine apparatus (SA) in dendritic spines. The SA consists of stacks of smooth endoplasmic reticulum (sER) contiguous with the meshwork of somatodendritic ER. Spines of SP-deficient mice contain sER but no SA, demonstrating that SP is necessary for the assembly of ER cisterns into the more complex SA organelle. Although the SA was described decades ago, its function was difficult to investigate and remained elusive, in part because reliable markers for the SA were missing. After SP was identified as an essential component and a reliable marker of the SA, a role of SP/SA in hippocampal synaptic plasticity could be firmly established using loss-of-function approaches. Further studies revealed that SP/SA participate in the regulation of Ca2+-dependent spine-specific Hebbian plasticity and in activity-dependent changes in the spine actin cytoskeleton. In this review we are summarizing recent progress made on SP/SA in Hebbian plasticity and discuss open questions such as causality, spatiotemporal dynamics and complementarity of SP/SA-dependent mechanisms. We are proposing that computational modeling of spine Ca2+-signaling and actin remodeling pathways could address some of these issues and could indicate future research directions. Moreover, reaction-diffusion simulations could help to identify key feedforward and feedback regulatory motifs regulating the switch between an LTP and an LTD signaling module in SP/SA-containing spines, thus helping to find a unified view of SP/SA action in Hebbian plasticity.
Collapse
Affiliation(s)
- Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, D-60590 Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, D-60590 Frankfurt/Main, Germany.
| |
Collapse
|
10
|
Verbich D, Becker D, Vlachos A, Mundel P, Deller T, McKinney RA. Rewiring neuronal microcircuits of the brain via spine head protrusions--a role for synaptopodin and intracellular calcium stores. Acta Neuropathol Commun 2016; 4:38. [PMID: 27102112 PMCID: PMC4840984 DOI: 10.1186/s40478-016-0311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/26/2022] Open
Abstract
Neurological diseases associated with neuronal death are also accompanied by axonal denervation of connected brain regions. In these areas, denervation leads to a decrease in afferent drive, which may in turn trigger active central nervous system (CNS) circuitry rearrangement. This rewiring process is important therapeutically, since it can partially recover functions and can be further enhanced using modern rehabilitation strategies. Nevertheless, the cellular mechanisms of brain rewiring are not fully understood. We recently reported a mechanism by which neurons remodel their local connectivity under conditions of network-perturbance: hippocampal pyramidal cells can extend spine head protrusions (SHPs), which reach out toward neighboring terminals and form new synapses. Since this form of activity-dependent rewiring is observed only on some spines, we investigated the required conditions. We speculated, that the actin-associated protein synaptopodin, which is involved in several synaptic plasticity mechanisms, could play a role in the formation and/or stabilization of SHPs. Using hippocampal slice cultures, we found that ~70 % of spines with protrusions in CA1 pyramidal neurons contained synaptopodin. Analysis of synaptopodin-deficient neurons revealed that synaptopodin is required for the stability but not the formation of SHPs. The effects of synaptopodin could be linked to its role in Ca2+ homeostasis, since spines with protrusions often contained ryanodine receptors and synaptopodin. Furthermore, disrupting Ca2+ signaling shortened protrusion lifetime. By transgenically reintroducing synaptopodin on a synaptopodin-deficient background, SHP stability could be rescued. Overall, we show that synaptopodin increases the stability of SHPs, and could potentially modulate the rewiring of microcircuitries by making synaptic reorganization more efficient.
Collapse
|
11
|
Wang L, Dumoulin A, Renner M, Triller A, Specht CG. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck. PLoS One 2016; 11:e0148310. [PMID: 26840625 PMCID: PMC4739495 DOI: 10.1371/journal.pone.0148310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion.
Collapse
Affiliation(s)
- Lili Wang
- Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, Institute of Biology, Ecole Normale Supérieure (ENS), Paris, France
| | - Andréa Dumoulin
- Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, Institute of Biology, Ecole Normale Supérieure (ENS), Paris, France
| | - Marianne Renner
- Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, Institute of Biology, Ecole Normale Supérieure (ENS), Paris, France
| | - Antoine Triller
- Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, Institute of Biology, Ecole Normale Supérieure (ENS), Paris, France
- * E-mail:
| | - Christian G. Specht
- Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, Institute of Biology, Ecole Normale Supérieure (ENS), Paris, France
| |
Collapse
|
12
|
Familtsev D, Quiggins R, Masterson SP, Dang W, Slusarczyk AS, Petry HM, Bickford ME. Ultrastructure of geniculocortical synaptic connections in the tree shrew striate cortex. J Comp Neurol 2015; 524:1292-306. [PMID: 26399201 DOI: 10.1002/cne.23907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 12/28/2022]
Abstract
To determine whether thalamocortical synaptic circuits differ across cortical areas, we examined the ultrastructure of geniculocortical terminals in the tree shrew striate cortex to compare directly the characteristics of these terminals with those of pulvinocortical terminals (examined previously in the temporal cortex of the same species; Chomsung et al. [] Cereb Cortex 20:997-1011). Tree shrews are considered to represent a prototype of early prosimian primates but are unique in that sublaminae of striate cortex layer IV respond preferentially to light onset (IVa) or offset (IVb). We examined geniculocortical inputs to these two sublayers labeled by tracer or virus injections or an antibody against the type 2 vesicular glutamate antibody (vGLUT2). We found that layer IV geniculocortical terminals, as well as their postsynaptic targets, were significantly larger than pulvinocortical terminals and their postsynaptic targets. In addition, we found that 9-10% of geniculocortical terminals in each sublamina contacted GABAergic interneurons, whereas pulvinocortical terminals were not found to contact any interneurons. Moreover, we found that the majority of geniculocortical terminals in both IVa and IVb contained dendritic protrusions, whereas pulvinocortical terminals do not contain these structures. Finally, we found that synaptopodin, a protein uniquely associated with the spine apparatus, and telencephalin (TLCN, or intercellular adhesion molecule type 5), a protein associated with maturation of dendritic spines, are largely excluded from geniculocortical recipient layers of the striate cortex. Together our results suggest major differences in the synaptic organization of thalamocortical pathways in striate and extrastriate areas.
Collapse
Affiliation(s)
- Dmitry Familtsev
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202
| | - Ranida Quiggins
- Department of Anatomy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sean P Masterson
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202
| | - Wenhao Dang
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, 40292
| | - Arkadiusz S Slusarczyk
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, 40292
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202
| |
Collapse
|
13
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
14
|
Strehl A, Lenz M, Itsekson-Hayosh Z, Becker D, Chapman J, Deller T, Maggio N, Vlachos A. Systemic inflammation is associated with a reduction in Synaptopodin expression in the mouse hippocampus. Exp Neurol 2014; 261:230-5. [PMID: 24837317 DOI: 10.1016/j.expneurol.2014.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/06/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023]
Abstract
Systemic inflammation is known to affect memory function through the activation of immune cells and the release of inflammatory cytokines. However, the neuronal targets by which inflammatory signaling pathways affect synaptic plasticity remain not well understood. Here, we addressed the question of whether systemic lipopolysaccharide (LPS)-induced inflammation influences the expression of Synaptopodin (SP). SP is an actin-binding protein, which is considered to control the ability of neurons to express synaptic plasticity by regulating the actin-cytoskeleton and/or intracellular Ca(2+) stores. This makes SP an interesting target molecule in the context of inflammation-induced alterations in synaptic plasticity. Using quantitative PCR (qPCR)-analysis and immunohistochemistry we here demonstrate that intraperitoneal LPS-injection in two-month old male Balb/c mice leads to a reduction in hippocampal SP-levels (area CA1; 24h after injection). These changes are accompanied by a defect in the ability to induce long-term potentiation (LTP) of Schaffer collateral-CA1 synapses, similar to what is observed in SP-deficient mice. We therefore propose that systemic inflammation could exert its effects on neural plasticity, at least in part, through the down-regulation of SP in vivo.
Collapse
Affiliation(s)
- Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Cluster of Excellence Macromolecular Complexes, Goethe-University Frankfurt, 60438 Frankfurt, Germany; Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Maximilian Lenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Zeev Itsekson-Hayosh
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Joab Chapman
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel.
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
15
|
Abstract
The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density and actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level.
Collapse
Affiliation(s)
- Lesley A Colgan
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458; ,
| | | |
Collapse
|
16
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
17
|
Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M, Esteban-Pretel G. Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 2013; 24:532-48. [PMID: 23820986 DOI: 10.1007/s12640-013-9409-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Synaptopodin regulates denervation-induced homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 2013; 110:8242-7. [PMID: 23630268 DOI: 10.1073/pnas.1213677110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synaptopodin (SP) is a marker and essential component of the spine apparatus (SA), an enigmatic cellular organelle composed of stacked smooth endoplasmic reticulum that has been linked to synaptic plasticity. However, SP/SA-mediated synaptic plasticity remains incompletely understood. To study the role of SP/SA in homeostatic synaptic plasticity we here used denervation-induced synaptic scaling of mouse dentate granule cells as a model system. This form of plasticity is of considerable interest in the context of neurological diseases that are associated with the loss of neurons and subsequent denervation of connected brain regions. In entorhino-hippocampal slice cultures prepared from SP-deficient mice, which lack the SA, a compensatory increase in excitatory synaptic strength was not observed following partial deafferentation. In line with this finding, prolonged blockade of sodium channels with tetrodotoxin induced homeostatic synaptic scaling in wild-type, but not SP-deficient, slice cultures. By crossing SP-deficient mice with a newly generated transgenic mouse strain that expresses GFP-tagged SP under the control of the Thy1.2 promoter, the ability of dentate granule cells to form the SA and to homeostatically strengthen excitatory synapses was rescued. Interestingly, homeostatic synaptic strengthening was accompanied by a compensatory increase in SP cluster size/stability and SA stack number, suggesting that activity-dependent SP/SA remodeling could be part of a negative feedback mechanism that aims at adjusting the strength of excitatory synapses to persisting changes in network activity. Thus, our results disclose an important role for SP/SA in homeostatic synaptic plasticity.
Collapse
|
19
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
20
|
Rácz B, Weinberg RJ. Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 2013; 47:77-89. [PMID: 22983912 PMCID: PMC3538892 DOI: 10.1007/s12035-012-8345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Glutamatergic axons in the mammalian forebrain terminate predominantly onto dendritic spines. Long-term changes in the efficacy of these excitatory synapses are tightly coupled to changes in spine morphology. The reorganization of the actin cytoskeleton underlying this spine "morphing" involves numerous proteins that provide the machinery needed for adaptive cytoskeletal remodeling. Here, we review recent literature addressing the chemical architecture of the spine, focusing mainly on actin-binding proteins (ABPs). Accumulating evidence suggests that ABPs are organized into functionally distinct microdomains within the spine cytoplasm. This functional compartmentalization provides a structural basis for regulation of the spinoskeleton, offering a novel window into mechanisms underlying synaptic plasticity.
Collapse
Affiliation(s)
- Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, 1078, Budapest, Hungary.
| | | |
Collapse
|