1
|
Suchý T, Horný L, Šupová M, Adámek T, Blanková A, Žaloudková M, Grajciarová M, Yakushko O, Blassová T, Braun M. Age-related changes in the biochemical composition of the human aorta and their correlation with the delamination strength. Acta Biomater 2024:S1742-7061(24)00645-7. [PMID: 39510151 DOI: 10.1016/j.actbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Various studies have correlated the mechanical properties of the aortic wall with its biochemical parameters and inner structure. Very few studies have addressed correlations with the cohesive properties, which are crucial for understanding fracture phenomena such as aortic dissection, i.e. a life-threatening process. Aimed at filling this gap, we conducted a comprehensive biochemical and histological analysis of human aortas (the ascending and descending thoracic and infrarenal abdominal aorta) from 34 cadavers obtained post-mortem during regular autopsies. The pentosidine, hydroxyproline and calcium contents, calcium/phosphorus molar ratio, degree of atherosclerosis, area fraction of elastin, collagen type I and III, alpha smooth muscle actin, vasa vasorum, vasa vasorum density, aortic wall thickness, thicknesses of the adventitia, media and intima were determined and correlated with the delamination forces in the longitudinal and circumferential directions of the vessel as determined from identical cadavers. The majority of the parameters determined did not indicate significant correlation with age, except for the calcium content and collagen maturation (enzymatic crosslinking). The main results concern differences between enzymatic and non-enzymatic crosslinking and those caused by the presence of atherosclerosis. The enzymatic crosslinking of collagen increased with age and was accompanied by a decrease in the delamination strength, while non-enzymatic crosslinking tended to decrease with age and was accompanied by an increase in the delamination strength. As the rate of calcification increased, the presence of atherosclerosis led to the formation of calcium phosphate plaques with higher solubility than the tissue without or with only mild signs of atherosclerosis. STATEMENT OF SIGNIFICANCE: This study presents a detailed biochemical and histological analysis of human aortic samples (ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta) taken from 34 cadavers. The contribution of this scientific study lies in the detailed biochemical comparison of the enzymatic and non-enzymatic glycosylation-derived crosslinks of vascular tissues and their influence on the delamination strength of the human aorta since, to the best of our knowledge, no such comprehensive studies exist in the literature. A further benefit concerns the notification of the limitations of the various analytical methods applied; an important factor that must be taken into account in such studies.
Collapse
Affiliation(s)
- Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic.
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
| | - Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Tomáš Adámek
- Department of Forensic Medicine and Toxicology, Regional Hospital Liberec, 460 63 Liberec, Czech Republic
| | - Alžběta Blanková
- Department of Forensic Medicine and Toxicology, Regional Hospital Liberec, 460 63 Liberec, Czech Republic
| | - Margit Žaloudková
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Martina Grajciarová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Olena Yakushko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tereza Blassová
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Martin Braun
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| |
Collapse
|
2
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang S, Jia H, Xi Y, Yuan P, Wu M, Guo W, Chen D, Xiong J. The Role of Location, Length, and Thickness of the Intimal Flap in the Propagation of Stanford Type B Aortic Dissection Based on Ex Vivo Porcine Aorta Models. J Endovasc Ther 2023:15266028231199930. [PMID: 37728019 DOI: 10.1177/15266028231199930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
PURPOSE To explore the role of location, length, and thickness of the intimal flap in the propagation of Stanford type B aortic dissection (TBAD) based on ex vivo porcine aorta models based on ex vivo porcine aorta models. MATERIALS AND METHODS The porcine aortas were harvested and randomly divided into 6 groups to create various TBAD aortic models. We constructed intimal flaps for different locations (group A [entry tear on outer curvature] and group B [entry tear on inner curvature]), lengths (group C [long] and group D [short]), and thicknesses (group E [thick] and group F [thin]). For the ex vivo perfusion experiments conducted on model aortas, an experimental circulation loop (ECL) was employed. The pressure in false lumen (FL) was constantly monitored. A comparison was made between the morphological data collected before and after the experiment to quantify the changes in the FL after the experiment. RESULTS Compared the results with group B, the mean peak pressures of the FL in group A were lower (106.87±15.55 vs. 124.01±22.75 mm Hg, p=0.028). The mean axial propagation length in group A was shown to be shorter than that of group B (88.14±33.38 vs. 197.43±41.65 mm, p<0.001). The mean peak pressure was higher in group C than in group D (144.04±19.37 vs. 92.51±26.70 mm Hg, p<0.001). The mean peak pressure of group E was higher than that of group F (160.83±32.83 vs. 109.33±15.62 mm Hg, p<0.001), as was the mean axial propagation length of group E (143.11±39.73 vs. 100.45±35.44 mm, p=0.021). According to the results of multivariable linear regression, axial propagation length=45.873-0.703×length of initial FL+0.863× peak pressure (p<0.001). CONCLUSION There was a relationship between FL propagation and the location, length, and thickness of the intimal flap. The axial propagation length was related to the length of the intimal flap and the peak pressure of propagation. It may be helpful to evaluate the risk of propagation in patients with TBAD. CLINICAL IMPACT This study found that the locations, lengths, and thickness of the intimal flap significantly contributed to propagation pressure of FL. Using dissection flap characteristics, a physician can predict FL development in a patient and formulate a treatment plan.The purpose was to investigate the relationship between the dissection flap characteristics (location, length, and thickness) and the propagation of the FL, which is not clear at present. This study employed porcine models to create an experimental circulation loop. The perfusion experiment was conducted using a FL without distal re-entry and a non-pulsating flow.
Collapse
Affiliation(s)
- Shuangjing Wang
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Heyue Jia
- Department of Emergency Surgery, Peking University People's Hospital, Beijing, China
| | - Yifu Xi
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Pengfei Yuan
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Mingwei Wu
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
4
|
Fang M, Zou J, Xu F, Wang X, Hua S, Zhou Q, Yang YG, Hu Z. Modeling human anti-pig xenoimmune responses in a pig artery tissue grafted humanized mouse model. Xenotransplantation 2023; 30:e12824. [PMID: 37695083 DOI: 10.1111/xen.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Blood vessels that contain endothelial cells (ECs) on the surface are in direct contact with host blood and are the first target of xenograft rejection. Currently, our understanding of human anti-pig vessel immune responses is primarily based on in vitro assays using pig ECs. Therefore, it is necessary to develop an animal model that permits in vivo study of human immunological rejection of pig vessels. METHODS Pig artery tissues (PAT) were transplanted into human immune system (HIS) mice or immunodeficient NSG mice (as controls). Intragraft human immune cell infiltration and antibody deposition were quantified using histology and immunohistochemistry. Donor antigen-specific immune responses were quantified using a mixed lymphocyte reaction and a complement-dependent killing assay. RESULTS Pig CD31+ ECs were detected and increased 2-fold from weeks 3 to 5 in PAT xenografts from immunodeficient NSG mice. However, compared with NSG mice, PAT xenografts in HIS mice had significantly lower numbers of porcine CD31+ ECs and showed a marked reduction from week 3 to week 5. PAT xenograft rejection in HIS mice is associated with intensive infiltration of human immune cells, deposition of human IgM and IgG antibodies, and the formation of a tertiary lymphoid structure. Robust donor pig antigen-specific human T cells and antibody responses were detected in PAT-transplanted HIS mice. CONCLUSION We have developed a humanized mouse model to evaluate human anti-pig xenoimmune responses by PAT transplantation in vivo. This model is expected to facilitate the refinement of pig gene-editing strategies (the expression on EC surface) and the testing of local immunosuppressive strategies for clinical pig organ xenotransplantation.
Collapse
Affiliation(s)
- Minghui Fang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Fei Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, and National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model. J Funct Biomater 2023; 14:jfb14020088. [PMID: 36826887 PMCID: PMC9965469 DOI: 10.3390/jfb14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture.
Collapse
|
6
|
Mompeó B, Sacchini S, Quintana MDP, Rivero M, Consoli F, Fernández A, Bernaldo de Quirós Y. Morphological Structure of the Aortic Wall in Deep Diving Cetacean Species: Evidence for Diving Adaptation. Vet Sci 2022; 9:vetsci9080424. [PMID: 36006339 PMCID: PMC9412527 DOI: 10.3390/vetsci9080424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study analyses the aortic wall structure in nine cetacean species with deep diving habits belonging to four Odontoceti families: Ziphiidae, Kogiidae, Physteridae, and Delphinidae. Samples of ascending, thoracic and abdominal aorta were processed for histological and morphometric studies. The elastic component was higher in the proximal aortic segments, and the muscular elements increased distally in all cases. Morphometric analyses showed that all families presented a decrease in the thickness of the arterial wall and the tunica media along the aorta. The reduction was dramatic between ascending and thoracic aorta in the Physeteridae specimens; meanwhile, the other three families showed a more uniform decrease between the ascending, thoracic and abdominal aorta. The decline was not correlated with a reduced elastic or lamellar unit thickness but with a loss of lamellar units. The organization of the elements in the aortic wall did not show essential modifications between the four families, resembling the structure described previously in the shallow and intermediate diving dolphins. Our findings support that the difference in the morphometric characteristics of the different segments in the aortic wall is likely related to the diving habit more than the absolutes values of any other parameter.
Collapse
Affiliation(s)
- Blanca Mompeó
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Simona Sacchini
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
- Correspondence: ; Tel.: +34-928-451477
| | - María del Pino Quintana
- Department of Math, Edificio de Informática y Matemáticas, Campus Universitario de Tafira, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Miguel Rivero
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Francesco Consoli
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
7
|
Hassan MAA, Sayed RKA, Abdelsabour-Khalaf M, Abd-Elhafez EA, Anel-Lopez L, Riesco MF, Ortega-Ferrusola C, Montes-Garrido R, Neila-Montero M, Anel L, Alvarez M. Morphological and ultrasonographic characterization of the three zones of supratesticular region of testicular artery in Assaf rams. Sci Rep 2022; 12:8334. [PMID: 35585142 PMCID: PMC9117313 DOI: 10.1038/s41598-022-12243-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
To fully understand the histological, morphometrical and heamodynamic variations of different supratesticular artery regions, 20 mature and healthy Assaf rams were examined through ultrasound and morphological studies. The testicular artery images of the spermatic cord as shown by B-mode analysis indicated a tortuous pattern along its course toward the testis, although it tends to be less tortuous close to the inguinal ring. Doppler velocimetric values showed a progressive decline in flow velocity, in addition to pulsatility and vessel resistivity when entering the testis, where there were significant differences in the Doppler indices and velocities among the different regions. The peak systolic velocity, pulsatility index and resistive index were higher in the proximal supratesticular artery region, followed by middle and distal ones, while the end diastolic velocity was higher in the distal supratesticular region. The total arterial blood flow and total arterial blood flow rate reported a progressive and significant increase along the testicular cord until entering the testis. Histological examination revealed presence of vasa vasorum in the tunica adventitia, with their diameter is higher in the proximal supratesticular zone than middle and distal ones. Morphometrically, the thickness of the supratesticular artery wall showed a significant decline downward toward the testis; meanwhile, the outer arterial diameter and inner luminal diameter displayed a significant increase distally. The expression of alpha smooth muscle actin and vimentin was higher in the tunica media of the proximal supratesticular artery zone than in middle and distal ones.
Collapse
Affiliation(s)
- Mohamed A A Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Mohammed Abdelsabour-Khalaf
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Enas A Abd-Elhafez
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - L Anel-Lopez
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain. .,Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - M F Riesco
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain.,Cellular Biology, Department of Molecular Biology, University of León, 24071, León, Spain
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - R Montes-Garrido
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain.,Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain
| | - M Neila-Montero
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain.,Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain
| | - L Anel
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain.,Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain
| | - M Alvarez
- ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain.,Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain
| |
Collapse
|
8
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Grajciarová M, Turek D, Malečková A, Pálek R, Liška V, Tomášek P, Králičková M, Tonar Z. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: A quantitative histological comparison. Ann Anat 2022; 242:151910. [PMID: 35189268 DOI: 10.1016/j.aanat.2022.151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Coronary artery bypass grafting (CABG) is a common cardiac surgery. Manufacturing small-diameter (2-5mm) vascular grafts for CABG is important for patients who lack first-choice autologous arterial, or venous conduits. Ovine and porcine common carotid arteries (CCAs) are used as large animal models for in vivo testing of newly developed tissue-engineered arterial grafts. It is unknown to what extent these models are interchangeable and whether the left and right arteries of the same subjects can be used as experimental controls. Therefore, we compared the microscopic structure of paired left and right ovine and porcine CCAs in the proximodistal direction and compared these animal model samples to samples of human coronary arteries (CAs) and human internal thoracic arteries (ITAs). METHODS We compared the histological composition of whole CCAs of sheep (n=22 animals) with whole porcine CCAs (n=21), segments of human CAs (n=21), and human ITAs (n=21). Using unbiased sampling and stereological methods, we quantified the fractions of elastin, total collagen, type I collagen, type III collagen, smooth muscle actin (SMA) and chondroitin sulfate (CS) A, B, and C. We also quantified the densities and distributions of nuclear profiles, nervi vasorum and vasa vasorum as well as the thickness of the intima-media and total wall thickness. RESULTS The differences between the paired samples of left and right CCAs in sheep were substantially greater than the differences in laterality in porcine CCAs. The right ovine CCAs had a smaller fraction of elastin (p<0.001), greater fraction of SMA (p<0.01), and greater intima-media thickness (p<0.001) than the paired left side CCAs. In pigs, the right CCAs had a greater fraction of elastin (p<0.05) and a greater density of vasa vasorum in the media (p<0.001) than the left-side CCAs. The fractions of elastin and CS decreased and the fraction of SMA increased in the proximodistal direction in both the ovine (p<0.001) and porcine (p<0.001) CCAs. Ovine CCAs had a muscular phenotype along their entire length, but porcine CCAs were elastic-type arteries in the proximal segments but muscular type arteries in middle and distal segments. The CCAs of both animals differed from the human CAs and ITAs in most parameters, but the ovine CCAs had a comparable fraction of elastin and CS to human ITAs. CONCLUSIONS From a histological point of view, ovine and porcine CCAs were not equivalent in most quantitative parameters to human CAs and ITAs. Left and right ovine CCAs did not have the same histological composition, which is limiting for their mutual equivalence as sham-operated controls in experiments. These differences should be taken into account when designing and interpreting experiments using these models in cardiac surgery. The complete morphometric data obtained by quantitative evaluation of arterial segments were provided to facilitate the power analysis necessary for justification of the minimum number of samples when planning further experiments. The middle or distal segments of ovine and porcine CCAs remain the most realistic and the best characterized large animal models for testing artificial arterial CABG conduits.
Collapse
Affiliation(s)
- Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Daniel Turek
- First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague 2, Czech Republic; Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Petr Tomášek
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 2, 180 81 Prague, Czech Republic
| | - Milena Králičková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| |
Collapse
|
10
|
Larsen AI. Aortic calcification; from innocent bystander to independent predictor; the delicate balance in biology; da aaaCapo: Editorial accompanying ‘Abdominal aortic calcification – from ancient friend to modern foe’. Eur J Prev Cardiol 2022; 28:e20-e24. [PMID: 32674591 DOI: 10.1177/2047487320937130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alf Inge Larsen
- Department of Cardiology, Stavanger University Hospital, Norway
- Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
11
|
Uimonen M. Synthesis of multidimensional pathophysiological process leading to type A aortic dissection: a narrative review. J Thorac Dis 2021; 13:6026-6036. [PMID: 34795949 PMCID: PMC8575841 DOI: 10.21037/jtd-21-829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Objective This review aims to synthesize the existing knowledge on the etiological process leading to type A aortic dissection (TAAD) and to clarify the relationship between mechanical, biochemical, and histopathological processes behind the aortic disease. Background Extensive research has previously identified several risk factors for TAAD as well as pathological mechanisms leading to TAAD. However, due to the complexity of the pathological process and limited knowledge on the relationships between distinct pathomechanisms leading to TAAD, the ability to identify the patients at high risk for TAAD has been poor. Methods PubMed (National Library of Medicine) database was searched for suitable literature. The most relevant articles focusing on anatomy, histopathology, physiology, and mechanics of ascending aorta and aortic diseases were reviewed. Conclusions Pathophysiology of the TAAD is related to biochemical and histological as well as mechanical and hemodynamic alterations leading to a degeneration of the aortic wall via inflammatory response. The degradative mechanisms of aortic wall structures and the mechanical forces, to which the wall is predisposed, are interrelated and influence one another. The relativity between the factors influencing aortic wall strength and healing capacity, and factors influencing mechanical stress on the aortic wall suggest that the risk of TAAD is not a linear but rather a dynamic phenomenon. Accounting for the dynamical property of the aortic disease in assessing the need for preventive surgical aortic reconstruction may provide a wider perspective in identifying patients at risk of TAAD and in planning preventive medical therapies.
Collapse
Affiliation(s)
- Mikko Uimonen
- Department of Surgery, Central Finland Hospital Nova, Jyväskylä, Finland
| |
Collapse
|
12
|
Federspiel JM, Schnabel PA, Tschernig T, Balint B, Schwab T, Laschke MW, Schäfers HJ. Aortic aneurysms with tricuspid aortic valve have more degeneration than unicuspid aortic valve aneurysms. Eur J Cardiothorac Surg 2021; 60:333-340. [PMID: 33675640 DOI: 10.1093/ejcts/ezab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES The unicuspid aortic valve (UAV) is a rare cardiac malformation and is associated with the formation of ascending aortic aneurysms. To characterize its associated aortic wall changes, normal and aneurysmatic ascending aortic wall specimens were analysed, focusing on the potential mechanisms of aneurysm formation. Patients with tricuspid aortic valve (TAV) served as controls. METHODS In a retrospective observational study, 74 specimens (dilated and non-dilated aortas; individuals with UAV and TAV) obtained intraoperatively were studied. Standard stains and immunohistochemical labelling of cleaved caspase-3, cluster of differentiation 31 and endothelial nitric oxide synthase (eNOS) were performed to assess the degree of apoptosis, distribution of eNOS within the aortic wall, smooth muscle cell (SMC) nuclei loss and mucoid extracellular matrix accumulation (MEMA). RESULTS Deeper ingrowth of vasa vasorum was found in dilated aortas. Interestingly, eNOS was expressed mostly in vasa vasorum. More apoptosis was seen in UAV aortas compared to TAV aortas (P < 0.001). Both UAV and TAV aortas were comparable regarding SMC nuclei loss (P = 0.419). In dilated compared to non-dilated aortas regardless valve morphology SMC nuclei loss was increased (P = 0.005) and more pronounced translamellar MEMA was present (P = 0.011). The highest grade of distribution (P = 0.043) and the highest severity (P = 0.005) regarding MEMA were seen in TAV dilated specimens compared to UAV dilated specimens. CONCLUSIONS Aneurysms with UAV show increased apoptosis, the role of which is unclear. Strikingly, more severe MEMA was found in TAV aneurysms compared to UAV aneurysms. Thus, UAV-associated aortic wall changes and resulting aneurysm may be less aggressive than aneurysms with TAV.
Collapse
Affiliation(s)
- Jan M Federspiel
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp A Schnabel
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy, Saarland University, Homburg/Saar, Germany
| | - Brittany Balint
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tanja Schwab
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
13
|
Iddawela S, Ravendren A, Harky A. Bio-chemo-mechanics of the thoracic aorta. VASCULAR BIOLOGY 2021; 3:R25-R33. [PMID: 33659859 PMCID: PMC7923035 DOI: 10.1530/vb-20-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
The pathophysiology of thoracic aortic aneurysm and dissection is poorly understood, despite high mortality. An evidence review was conducted to examine the biomechanical, chemical and genetic factors involved in thoracic aortic pathology. The composition of connective tissue and smooth muscle cells can mediate important mechanical properties that allow the thoracic aorta to withstand and transmit pressures. Genetic syndromes can affect connective tissue and signalling proteins that interrupt smooth muscle function, leading to tissue failure. There are complex interplaying factors that maintain thoracic aortic function in health and are disrupted in disease, signifying an area for extensive research.
Collapse
Affiliation(s)
- Sashini Iddawela
- Department of Respiratory Medicine, University Hospitals Birmingham, Birmingham, UK
| | | | - Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
14
|
Mompeó B, Pérez L, Fernández A, Saavedra P, Rivero M, Arbelo M, Arregui M, Suárez-Santana C, Bernaldo-de-Quiros Y. Morphological structure of the aortic wall in three Delphinid species with shallow or intermediate diving habits: Evidence for diving adaptation. J Morphol 2020; 281:377-387. [PMID: 32039518 DOI: 10.1002/jmor.21105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/01/2020] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
Some modifications in the vascular system of marine mammals provide adaptive advantages for diving. This study analyses the organisation of the aortic wall in dolphins, observing artery changes in volume and blood pressure for diving behaviour. Samples of three aortic segments (ascending, thoracic and abdominal) of three dolphin species were processed for histological and morphometric studies. The three dolphin species used, striped dolphin (Stenella coeruleoalba), Atlantic spotted dolphin (Stenella frontalis) and common dolphin (Delphinus delphis), have shallow or intermediate diving habits. Our results indicated that the components of the aortic wall of the dolphins had different dispositions in the three selected segments. The aortic wall decreased in thickness along its length due to a loss of the lamellar units in the tunica media and a thinning of the main elements of the lamellar units along the artery. The life stage had little influence on the thickness of the aortic wall except for the ascending aorta. The weight, body length, species or sex of the specimen did not significantly influence the thickness of the wall or the lamellar units. In summary, the histological and morphometric aortic structure in dolphins, in relation to the studied parameters, seems to be similar to that previously described of terrestrial mammals such as pigs, except for a larger difference in the proportion of lamellar units between the ascending and thoracic segments.
Collapse
Affiliation(s)
- Blanca Mompeó
- Department of Morphology, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Lilian Pérez
- Department of Morphology, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Antonio Fernández
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| | - Pedro Saavedra
- Department of Maths, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Miguel Rivero
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| | - Manuel Arbelo
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| | - Marina Arregui
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| | - Cristian Suárez-Santana
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| | - Yara Bernaldo-de-Quiros
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), (ULPGC), Las Palmas, Spain
| |
Collapse
|
15
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Chumachenko PV, Afanasyev MA, Ivanova AG, Drobkova IP, Kheimets GI, Postnov AY. [Inflammatory infiltrates, vasa vasorum, and endothelial NO synthase in the wall of thoracic aortic aneurysm]. Arkh Patol 2019; 81:45-52. [PMID: 31626204 DOI: 10.17116/patol20198105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To elucidate whether there is a relationship between inflammation of the wall of aortic aneurysm and the number of vasa vasorum in it. MATERIAL AND METHODS The investigation material was aortic aneurysm wall segments obtained during surgery. Among the patients, there were 20 men and 5 women. The patients' age ranged from 33 to 69 years. The investigation used monoclonal antibodies to macrophages (CD68), T cells (CD3, CD4, and CD8) and antibodies to von Willebrand factor, endothelial NO synthase, and alpha smooth muscle actin. A morphometric study was conducted. RESULTS Calculation of the number of vasa vasorum (including newly formed vessels) in the adventitia of aortic aneurysm revealed that there was a statistically significant difference between the number of vasa vasorum in patients with an active inflammatory response (Group 1) versus Group 2 patients with a moderate inflammatory process in the aneurysm wall (p≤0.05) and a statistically significant difference between Groups 1 and 3 (without inflammatory infiltrates) (p≤0.05). Endothelial vasa vasorum heterogeneity was found in case of an immune response to NO synthase. At the same time individual vasa vasorium did not contain NO synthase, this enzyme was identified in the endothelium in a number of nearby vessels. CONCLUSION The increase in the number of vasa vasorum in the aneurysm wall in patients with abundant inflammatory infiltrates is due to the fact that some of the inflammatory cytokines of T-cells and macrophages also contribute to angiogenesis.
Collapse
Affiliation(s)
- P V Chumachenko
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - M A Afanasyev
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - A G Ivanova
- Acad. B.V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - I P Drobkova
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - G I Kheimets
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - A Yu Postnov
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia; Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| |
Collapse
|
17
|
Tomášek P, Tonar Z, Grajciarová M, Kural T, Turek D, Horáková J, Pálek R, Eberlová L, Králíčková M, Liška V. Histological mapping of porcine carotid arteries - An animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. Ann Anat 2019; 228:151434. [PMID: 31704146 DOI: 10.1016/j.aanat.2019.151434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Using animal models in experimental medicine requires mapping of their anatomical variability. Porcine common carotid arteries (CCA) are often preferred for the preclinical testing of vascular grafts due to their anatomical and physiological similarity to human small-diameter arteries. Comparing the microscopic structure of animal model organs to their human counterparts reveals the benefits and limitations of translational medicine. METHODS Using quantitative histology and stereology, we performed an extensive mapping of the regional proximodistal differences in the fractions of elastin, collagen, and smooth muscle actin as well as the intima-media and wall thicknesses among 404 segments (every 1 cm) of porcine CCAs collected from male and female pigs (n = 21). We also compared the microscopic structure of porcine CCAs with segments of human coronary arteries and one of the preferred arterial conduits used for the coronary artery bypass grafting (CABG), namely, the internal thoracic artery (ITA) (n = 21 human cadavers). RESULTS The results showed that the histological structure of left and right porcine CCA can be considered equivalent, provided that gross anatomical variations of the regular branching patterns are excluded. The proximal elastic carotid (51.2% elastin, 4.2% collagen, and 37.2% actin) transitioned to more muscular middle segments (23.5% elastin, 4.9% collagen, 54.3% actin) at the range of 2-3 centimeters and then to even more muscular distal segments (17.2% elastin, 4.9% collagen, 64.0% actin). The resulting morphometric data set shows the biological variability of the artery and is made available for biomechanical modeling and for performing a power analysis and calculating the minimum number of samples per group when planning further experiments with this widely used large animal model. CONCLUSIONS Comparison of porcine carotids with human coronary arteries and ITA revealed the benefits and the limitations of using porcine CCAs as a valid model for testing bioengineered small-diameter CABG vascular conduits. Morphometry of human coronary arteries and ITA provided more realistic data for tailoring multilayered artificial vascular prostheses and the ranges of values within which the conduits should be tested in the future. Despite their limitations, porcine CCAs remain a widely used and well-characterized large animal model that is available for a variety of experiments in vascular surgery.
Collapse
Affiliation(s)
- Petr Tomášek
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 2, 180 81 Prague, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Tomáš Kural
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Daniel Turek
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague 2, Czech Republic; Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Jana Horáková
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Lada Eberlová
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Milena Králíčková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| |
Collapse
|
18
|
Blassova T, Tonar Z, Tomasek P, Hosek P, Hollan I, Treska V, Molacek J. Inflammatory cell infiltrates, hypoxia, vascularization, pentraxin 3 and osteoprotegerin in abdominal aortic aneurysms - A quantitative histological study. PLoS One 2019; 14:e0224818. [PMID: 31703088 PMCID: PMC6839860 DOI: 10.1371/journal.pone.0224818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Information about the tissue characteristics of abdominal aortic aneurysms (AAAs), some of which may be reflected in the serum, can help to elucidate AAA pathogenesis and identify new AAA biomarkers. This information would be beneficial not only for diagnostics and follow-up but also for potential therapeutic intervention. Therefore, the aim of our study was to compare the expression of structural proteins, immune factors (T and B lymphocytes, macrophages, neutrophils and pentraxin 3 (PTX3)), osteoprotegerin (OPG), microvessels and hypoxic cells in AAA and nonaneurysmal aortic walls. We examined specimens collected during surgery for AAA repair (n = 39) and from the abdominal aortas of kidney donors without AAA (n = 8). Using histochemical and immunohistochemical methods, we quantified the areas positive for smooth muscle actin, desmin, elastin, collagen, OPG, CD3, CD20, MAC387, myeloperoxidase, PTX3, and hypoxia-inducible factor 1-alpha and the density of CD31-positive microvessels. AAA samples contained significantly less actin, desmin, elastin and OPG, more collagen, macrophages, neutrophils, T lymphocytes, B lymphocytes, hypoxic cells and PTX3, and a greater density of vasa vasorum (VV) than those in non-AAA samples. Hypoxia positively correlated with actin and negatively correlated with collagen. Microvascular density was related to inflammatory cell infiltrates, hypoxia, PTX3 expression and AAA diameter. The lower OPG expression in AAAs supports the notion of its protective role in AAA remodeling. AAA contained altered amounts of structural proteins, implying reduced vascular elasticity. PTX3 was upregulated in AAA and colocalized with inflammatory infiltrates. This evidence supports further evaluation of PTX3 as a candidate marker of AAA. The presence of aortic hypoxia, despite hypervascularization, suggests that hypoxia-induced neoangiogenesis may play a role in AAA pathogenesis. VV angiogenesis of the AAA wall increases its vulnerability.
Collapse
Affiliation(s)
- Tereza Blassova
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- * E-mail:
| | - Zbynek Tonar
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Tomasek
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hosek
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ivana Hollan
- Hospital for Rheumatic Diseases, Lillehammer, Norway
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Vladislav Treska
- Department of Vascular Surgery, University Hospital in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Molacek
- Department of Vascular Surgery, University Hospital in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
19
|
Federspiel JM, Tschernig T, Laschke MW, Wagenpfeil S, Schnabel P, Schäfers HJ. The vasa vasorum reach deep into the human thoracic aorta. Ann Anat 2019; 225:54-56. [DOI: 10.1016/j.aanat.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
|
20
|
Horakova J, Mikes P, Lukas D, Saman A, Jencova V, Klapstova A, Svarcova T, Ackermann M, Novotny V, Kalab M, Lonsky V, Bartos M, Rampichova M, Litvinec A, Kubikova T, Tomasek P, Tonar Z. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery. ACTA ACUST UNITED AC 2018; 13:065009. [PMID: 30177582 DOI: 10.1088/1748-605x/aade9d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.19 μm and fiber diameters of 5.58 ± 0.10 μm. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czechia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol 2017; 96-98:5-10. [DOI: 10.1016/j.vph.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
22
|
The use of porcine corrosion casts for teaching human anatomy. Ann Anat 2017; 213:69-77. [PMID: 28578926 DOI: 10.1016/j.aanat.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/14/2017] [Accepted: 05/04/2017] [Indexed: 02/08/2023]
Abstract
In teaching and learning human anatomy, anatomical autopsy and prosected specimens have always been indispensable. However, alternative methods must often be used to demonstrate particularly delicate structures. Corrosion casting of porcine organs with Biodur E20® Plus is valuable for teaching and learning both gross anatomy and, uniquely, the micromorphology of cardiovascular, respiratory, digestive, and urogenital systems. Assessments of casts with a stereomicroscope and/or scanning electron microscope as well as highlighting cast structures using color coding help students to better understand how the structures that they have observed as two-dimensional images actually exist in three dimensions, and students found using the casts to be highly effective in their learning. Reconstructions of cast hollow structures from (micro-)computed tomography scans and videos facilitate detailed analyses of branching patterns and spatial arrangements in cast structures, aid in the understanding of clinically relevant structures and provide innovative visual aids. The casting protocol and teaching manual we offer can be adjusted to different technical capabilities and might also be found useful for veterinary or other biological science classes.
Collapse
|