1
|
Yamanaka R, Ichii O, Nakamura T, Otani Y, Namaba T, Kon Y. Effects of autoimmune abnormalities on fertility and placental morphology in mice. Autoimmunity 2024; 57:2319209. [PMID: 38389171 DOI: 10.1080/08916934.2024.2319209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-Faslpr/lpr mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-Faslpr/lpr at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (Krt15, Slc7a3, Sprr2a3) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (Ccl5, Cxcl9) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.
Collapse
Affiliation(s)
- Risa Yamanaka
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Hokkaido Universityty, Sapporo, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takashi Namaba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Lewis EL, Reichenberger ER, Anton L, Gonzalez MV, Taylor DM, Porrett PM, Elovitz MA. Regulatory T cell adoptive transfer alters uterine immune populations, increasing a novel MHC-II low macrophage associated with healthy pregnancy. Front Immunol 2023; 14:1256453. [PMID: 37901247 PMCID: PMC10611509 DOI: 10.3389/fimmu.2023.1256453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.
Collapse
Affiliation(s)
- Emma L. Lewis
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R. Reichenberger
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M. Porrett
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michal A. Elovitz
- Women’s Biomedical Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Bondarczuk NH, Schmidt NP, Breyer GM, de Moura AC, Molz P, Barshack AG, da Motta ADS, Guedes RP, Giovenardi M. A high-fat diet changes placental morphology but does not change biochemical parameters, placental oxidative stress or cytokine levels. Placenta 2023; 135:25-32. [PMID: 36913806 DOI: 10.1016/j.placenta.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION The placenta is an organ that forms the bridge between mother and fetus during pregnancy. Changes in the intrauterine environment directly impact the fetus' health, with maternal nutrition determining its development. This study analyzed the effects of different diets and probiotic supplementation during pregnancy on the biochemical parameters of maternal serum and placental morphology, oxidative stress, and cytokine levels in mice. METHODS Female mice were fed standard (CONT), restrictive (RD), or high-fat (HFD) diets before and during pregnancy. During pregnancy, the CONT and HFD groups were divided into two groups that received the Lactobacillus rhamnosus LB1.5 three times per week (CONT + PROB and HFD + PROB). The RD, CONT, or HFD groups received vehicle control. Maternal serum biochemical parameters (glucose, cholesterol, and triglycerides) were evaluated. The morphology, redox profile (thiobarbituric acid reactive substances, sulfhydryls, catalase, and superoxide dismutase enzyme activity), and inflammatory cytokines (interleukins 1α, 1β, IL-6, and tumor necrosis factor-alpha) were evaluated in the placenta. RESULTS The serum biochemical parameters presented no differences between the groups. Regarding placental morphology, the HFD group showed an increased thickness of the labyrinth zone compared to the CONT + PROB group. However, no significant difference was found in the analysis of the placental redox profile and cytokine levels. DISCUSSION RD and HFD, for 16 weeks before and during pregnancy, as well as probiotic supplementation during pregnancy, caused no change in serum biochemical parameters nor the gestational viability rate, placental redox state, and cytokine levels. However, HFD increased the thickness of the placental labyrinth zone.
Collapse
Affiliation(s)
- Nicole Hiller Bondarczuk
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Natália Perin Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Gabriela Merker Breyer
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Patrícia Molz
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Alethea Gatto Barshack
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Amanda de Souza da Motta
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Zhu D, Zou H, Liu J, Wang J, Ma C, Yin J, Peng X, Li D, Yang Y, Ren Y, Zhang Z, Zhou P, Wang X, Cao Y, Xu X. Inhibition of HMGB1 Ameliorates the Maternal-Fetal Interface Destruction in Unexplained Recurrent Spontaneous Abortion by Suppressing Pyroptosis Activation. Front Immunol 2022; 12:782792. [PMID: 35003098 PMCID: PMC8732860 DOI: 10.3389/fimmu.2021.782792] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of pregnancy that affects the physical and mental health of pregnant women, and approximately 50% of the mechanisms are unclear. Our previous studies have found that high mobility group box 1 (HMGB1) molecules are highly expressed at the maternal-fetal interface of unexplained recurrent spontaneous abortion (URSA) patients. The purpose of this study was to further detect the expression of HMGB1 and pyroptosis in decidual tissue of URSA patients, and explore the potential mechanism of the protective role of HMGB1 in URSA patients and mouse model. The decidua tissues of 75 URSA patients and 75 women who actively terminated pregnancy were collected, and URSA mouse models were established and treated with HMGB1 inhibitor-aspirin. The expression of HMGB1, and their receptors (RAGE, TLR2, TLR4), pyroptosis-associated proteins (NLRP-3, caspase-1, GSDMD) and NF-κB was examined at the maternal-fetal interface of human and mouse. Our study found that HMGB1, NLRP-3, Caspase-1, GSDMD, RAGE, TLR2 and TLR4 were highly expressed and NF-κB signaling pathway were activated in the decidua tissue of URSA group. Moreover, immune cell disorder and co-localization of HMGB1 and macrophages were found at the maternal-fetal interface of URSA mice. However, HMGB1, TLR2, TLR4, NF-κB, and pyroptosis-associated proteins can be down-regulated by administering low-dose aspirin. These data may indicate that highly expressed HMGB1 was actively secreted by macrophages and then activated pyroptosis through the TLR2/TLR4-NF-κB pathway to cause aseptic inflammation, leading to the occurrence and development of URSA. Moreover, low-dose aspirin can reduce HMGB1 protein levels of serum and decidual in URSA.
Collapse
Affiliation(s)
- Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Obstetrics and Gynecology, Chaohu Hospital of Anhui Medical University, Chaohu, China.,National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Jinxian Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Jing Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Jiaqian Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Xiaoqing Peng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Yulu Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Yu Ren
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China.,Anhui Provincial Institute of Translational Medicine(Anhui Medical University), Hefei, China
| | - Xiangyan Wang
- Department of Obstetrics and Gynecology, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
6
|
Shu C, Yu X, Cheng S, Jing J, Hu C, Pang B. Pristimerin Suppresses Trophoblast Cell Epithelial-Mesenchymal Transition via miR-542-5p/EGFR Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4659-4670. [PMID: 33173276 PMCID: PMC7646443 DOI: 10.2147/dddt.s274595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
Background Ectopic pregnancy (EP) is an ectopic embryo implantation occurred outside the uterine cavity. Nowadays, more attention have garnered in fast and effective treatment with less side effects. Pristimerin is known as the clinical application for anti-cancer, and the effect on EP therapy is still unclear. Materials and Methods Trophoblast cell line HTR-8/SVneo was used; then, we performed cell counting kit-8 assay, wound healing assay, flow cytometry and real-time polymerase chain reaction analysis (RT-PCR) to detect the cell viability, migration ability, apoptosis and epithelial–mesenchymal transition (EMT) under pristimerin treatment. In addition, public bioinformatic database was used to discover the connection between molecular and genes. Finally, we used miRNA transfection and RT-PCR techniques to determine the underlying molecular mechanism. Results We revealed that pristimerin inhibited trophoblast cells proliferation, migration and EMT, while induced trophoblast cell apoptosis. Furthermore, expression of miR-542-5p, AGO2 and EGFR was suppressed in HTR-8/SVneo cells post pristimerin treatment, and miR-542-5p silence showed the same effect. Combing pristimerin treatment and miR-542-5p silence showed a synergistic action. Conclusion Pristimerin could be an effective treatment to block embryo implantation by miR-542-5p and EGFR down-regulation.
Collapse
Affiliation(s)
- Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Xiaowei Yu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Shihuan Cheng
- Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Jili Jing
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Cong Hu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|