1
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
2
|
Gulati N, Chellappan DK, MacLoughlin R, Gupta G, Singh SK, Oliver BG, Dua K, Dureja H. Advances in nano-based drug delivery systems for the management of cytokine influx-mediated inflammation in lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3695-3707. [PMID: 38078921 DOI: 10.1007/s00210-023-02882-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/30/2023] [Indexed: 05/23/2024]
Abstract
Asthma, lung cancer, cystic fibrosis, tuberculosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and COVID-19 are few examples of inflammatory lung conditions that cause cytokine release syndrome. It can initiate a widespread inflammatory response and may activate several inflammatory pathways that cause multiple organ failures leading to increased number of deaths and increased prevalence rates around the world. Nanotechnology-based therapeutic modalities such as nanoparticles, liposomes, nanosuspension, monoclonal antibodies, and vaccines can be used in the effective treatment of inflammatory lung diseases at both cellular and molecular levels. This would also help significantly in the reduction of patient mortality. Therefore, nanotechnology could be a potent platform for repurposing current medications in the treatment of inflammatory lung diseases. The aim and approach of this article are to highlight the clinical manifestations of cytokine storm in inflammatory lung diseases along with the advances and potential applications of nanotechnology-based therapeutics in the management of cytokine storm. Further in-depth studies are required to understand the molecular pathophysiology, and how nanotechnology-based therapeutics can help to effectively combat this problem.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02YN77, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Brian G Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2037, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia.
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2037, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia.
| |
Collapse
|
3
|
Xie D, Quan J, Yu X, Liang Z, Chen Y, Wu L, Lin L, Fan L. Molecular mechanism of Jianpiyifei II granules in the treatment of chronic obstructive pulmonary disease: Network pharmacology analysis, molecular docking, and experimental assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155273. [PMID: 38342020 DOI: 10.1016/j.phymed.2023.155273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified. PURPOSE To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment. METHODS A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting. RESULTS In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF. CONCLUSION This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingyu Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Lin Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
4
|
He F, Yu X, Zhang J, Cui J, Tang L, Zou S, Pu J, Ran P. Biomass-related PM 2.5 induced inflammatory microenvironment via IL-17F/IL-17RC axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123048. [PMID: 38036089 DOI: 10.1016/j.envpol.2023.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.
Collapse
Affiliation(s)
- Fang He
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jieda Cui
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China
| | - Lei Tang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Siqi Zou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
5
|
Zhou Z, Yang L, Hu C, Gao R, Zhang X, Shen T. The combination of astragalus injection and ambroxol hydrochloride in the adjuvant treatment of COPD: a systematic review and meta-analysis. Sci Rep 2023; 13:22077. [PMID: 38087032 PMCID: PMC10716149 DOI: 10.1038/s41598-023-49421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a severe condition that leads to premature mortality and places a significant financial burden on healthcare systems. An adjunctive therapy in COPD includes the simultaneous administration of astragalus injection and ambroxol hydrochloride. Despite its widespread use, the effectiveness of this combined approach in COPD treatment has not been systematically evaluated. Thus, we conducted a systematic review and meta-analysis to assess the efficacy of combining astragalus injection with ambroxol hydrochloride as an adjuvant treatment for COPD. Six electronic databases were used to search for relevant randomized controlled trials, and data analysis was conducted using Review Manager 5.4. A total of 14 randomized controlled trials were included, involving 1070 patients who met the criteria. The results of the meta-analysis indicated that the combination of astragalus injection with ambroxol hydrochloride as an adjuvant treatment can improve various clinical parameters in patients with COPD compared to conventional treatment alone. These parameters include the clinical effective rate (OR = 5.44, 95% CI 3.51-8.43, I2 = 0%), partial pressure of oxygen in artery (MD = 1.12, 95% CI 0.87-1.36, I2 = 5%), partial pressure of carbon dioxide in artery (MD = - 1.43, 95% CI - 1.65 to - 1.21, I2 = 0%), forced expiratory volume in one second (MD = 0.30, 95% CI 0.18-0.42, I2 = 0%), percentage of forced expiratory volume in one second (MD = 16.18, 95% CI 12.60-19.76, I2 = 82%), forced vital capacity (MD = 0.33, 95% CI 0.21-0.45, I2 = 36%), hemoglobin (MD = - 16.17, 95% CI - 20.84 to - 11.51, I2 = 29%), and the ratio of forced expiratory volume in one second to forced vital capacity (MD = 2.51, 95% CI - 0.05 to 5.06, I2 = 0%). The combination of astragalus injection and ambroxol hydrochloride could be a selection of COPD patients as an adjuvant treatment. However, further validation is required to evaluate the effectiveness of combining astragalus injection and ambroxol hydrochloride as an adjunctive treatment for patients with COPD.
Collapse
Affiliation(s)
- Zubing Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Lele Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chao Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rui Gao
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, 610095, China
| | - Xiaobo Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Wang J, Ren C, Jin L, Batu W. Seabuckthorn Wuwei Pulvis attenuates chronic obstructive pulmonary disease in rat through gut microbiota-short chain fatty acids axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116591. [PMID: 37146846 DOI: 10.1016/j.jep.2023.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seabuckthorn Wuwei Pulvis (SWP) is a traditional Mongolian medicine used in China. It is composed of Hippophae rhamnoides (berries, 30 g), Aucklandiae costus Falc. (dry root, 25 g), Vitis vinifera F. Cordifolia (berries, 20 g), Glycyrrhiza uralensis Fisch. (dry root, 15 g), and Gardenia jasminoides J. Ellis (desiccative ripe fruit, 10 g). It is clinically applied in the treatment of chronic cough, shortness of breath and phlegm, and chest distress. Past studies demonstrated that Seabuckthorn Wuwei Pulvis improved lung inflammation and chronic bronchitis in mice. However, the effect of Seabuckthorn Wuwei Pulvis on chronic obstructive pulmonary disease (COPD) in rats and the underlying action mechanism is not fully understood. AIM OF THE STUDY To evaluate the anti-COPD effect of Seabuckthorn Wuwei Pulvis and investigate whether its ameliorative effect is correlated with the composition of gut microbiota and its metabolites. MATERIALS AND METHODS The effects of Seabuckthorn Wuwei Pulvis on a COPD rat model were established by exposure to lipopolysaccharide (LPS) and smoking. These effects were then evaluated by monitoring the animal weight, pulmonary function, lung histological alteration, and the levels of inflammatory factors (tumor necrotic factor [TNF]-α, interleukin [IL]-8, IL-6, and IL-17). Furthermore, the serum LPS and fluorescein isothiocyanate-dextran levels were detected by using an enzyme-linked immunosorbent assay and fluorescence microplate reader, respectively. Tight junction proteins (ZO-1 and occludin-1) in the small intestine were detected by performing real-time quantitative polymerase chain reactions and Western blotting to evaluate the intestinal barrier function. The contents of short-chain fatty acids (SCFAs) in the feces of rats were determined by gas chromatography-mass spectrometry. 16S rDNA high throughput sequencing was used to investigate the effect of SWP on the gut microbiota of COPD rats. RESULTS Treatment with low and median doses of SWP significantly increased the pulmonary function (forced expiratory volume [FEV] 0.3, forced vital capacity [FVC], and FEV0.3/FVC), decreased the levels of TNF-α, IL-8, IL-6, and IL-17 in the lung, and attenuated the infiltration of inflammatory cells into the lung. The low and median doses of SWP shaped the composition of gut microbiota, which increased the abundances of Ruminococcaceae, Christensenellaceae, and Aerococcaceae, increased the productions of acetic acid, propionic acid, and butyric acid, and upregulated the expression of ZO-1 and occludin-1 in the small intestine of COPD rats. CONCLUSION SWP improved pulmonary functions and inhibited the inflammatory response by shaping the gut microbiota, increasing SCFA production, and strengthening the intestinal barrier function in rats with COPD induced by LPS and smoking.
Collapse
Affiliation(s)
- JunMei Wang
- Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Chunxiu Ren
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 017099, China
| | - Lingling Jin
- Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Wuliji Batu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 017099, China.
| |
Collapse
|
7
|
Pathophysiology, Therapeutic Targets, and Future Therapeutic Alternatives in COPD: Focus on the Importance of the Cholinergic System. Biomolecules 2023; 13:biom13030476. [PMID: 36979411 PMCID: PMC10046140 DOI: 10.3390/biom13030476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airway limitation and changes in airway structure. It has a high global burden of mortality and morbidity. The etiology of COPD is complex, but exposure to tobacco smoke and other inhaled lung oxidants are major risk factors. Both pharmacological and non-pharmacological approaches are used to manage COPD, but there remains an urgent unmet need for drugs that can modify the course of the disease. This review focuses on the role of acetylcholine and other components of the pulmonary cholinergic system in the pathogenesis of COPD, and the inhaled pharmacological agents that target it. In addition to its role as a neurotransmitter, acetylcholine regulates diverse aspects of COPD pathogenesis including bronchoconstriction, airway remodeling, mucus secretion and inflammation. Inhaled antimuscarinic drugs are a key component of therapy for COPD, as monotherapy or in combination with inhaled β2 agonists or corticosteroids. We review the evidence supporting the use of current anticholinergic agents in COPD and preview novel drugs targeting the cholinergic system and agents from other classes in clinical development, such as phosphodiesterase-4 inhibitors and monoclonal antibodies targeting inflammatory mediators.
Collapse
|
8
|
Matera MG, Calzetta L, Cazzola M, Ora J, Rogliani P. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther 2023; 23:163-173. [PMID: 36527286 DOI: 10.1080/14712598.2022.2160238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complicated chronic inflammatory response that is resistant to corticosteroid therapy. As a result, there is a critical need for effective anti-inflammatory medications to treat people with COPD. Using monoclonal antibodies (mAbs) to inhibit cytokines and chemokines or their receptors could be a potential approach to treating the inflammatory component of COPD. AREAS COVERED The therapeutic potential that some of these mAbs might have in COPD is reviewed. EXPERT OPINION No mAb directed against cytokines or chemokines has shown any therapeutic impact in COPD patients, apart from mAbs targeting the IL-5 pathway that appear to have statistically significant, albeit weak, effect in patients with eosinophilic COPD. This may reflect the complexity of COPD, in which no single cytokine or chemokine has a dominant role. Because the umbrella term COPD encompasses several endotypes with diverse underlying processes, mAbs targeting specific cytokines or chemokines should most likely be evaluated in limited and focused populations.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
10
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021; 15:363-374. [PMID: 34475751 PMCID: PMC8407524 DOI: 10.2147/btt.s295409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Several mAbs have been tested or are currently under clinical evaluation for the treatment of COPD. They can be subdivided into those that aim to block specific pro-inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by blocking IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway and blocking TSLP. None of these approaches has proved to be effective, probably because in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be effective on all pathways. With a more in-depth understanding of the numerous pheno/endotypic pathways that play a role in COPD, it may eventually be possible to identify those specific patients in whom some of these cytokines or chemokines might predominate. In this case, it will be possible to implement a personalized treatment, but the use of each mAb will only be reserved for a very limited number of subjects.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
11
|
Dual interleukin-17A/F deficiency protects against acute and chronic response to cigarette smoke exposure in mice. Sci Rep 2021; 11:11508. [PMID: 34075087 PMCID: PMC8169846 DOI: 10.1038/s41598-021-90853-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
IL-17A and IL-17F are both involved in the pathogenesis of neutrophilic inflammation observed in COPD and severe asthma. To explore this, mice deficient in both Il17a and Il17f and wild type (WT) mice were exposed to cigarette smoke or environmental air for 5 to 28 days and changes in inflammatory cells in bronchoalveolar lavage (BAL) fluid were determined. We also measured the mRNA expression of keratinocyte derived chemokine (Kc), macrophage inflammatory protein-2 (Mip2), granulocyte–macrophage colony stimulating factor (Gmcsf) and matrix metalloproteinase-9 (Mmp9 ) in lung tissue after 8 days, and lung morphometric changes after 24 weeks of exposure to cigarette smoke compared to air-exposed control animals. Macrophage counts in BAL fluid initially peaked at day 8 and again on day 28, while neutrophil counts peaked between day 8 and 12 in WT mice. Mice dual deficient with Il17a and 1l17f showed similar kinetics with macrophages and neutrophils, but cell numbers at day 8 and mRNA expression of Kc, Gmcsf and Mmp9 were significantly reduced. Furthermore, airspaces in WT mice became larger after cigarette smoke exposure for 24 weeks, whereas this was not seen dual Il17a and 1l17f deficient mice. Combined Il17a and Il17f deficiency resulted in significant attenuation of neutrophilic inflammatory response and protection against structural lung changes after long term cigarette smoke exposure compared with WT mice. Dual IL-17A/F signalling plays an important role in pro-inflammatory responses associated with histological changes induced by cigarette smoke exposure.
Collapse
|