1
|
Li J, Lin J, Kohen A, Singh P, Francis K, Cheatum CM. Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase. Biochemistry 2021; 60:3822-3828. [PMID: 34875176 PMCID: PMC8697555 DOI: 10.1021/acs.biochem.1c00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Evolution of dihydrofolate
reductase (DHFR) has been studied using
the enzyme from Escherichia coli DHFR
(ecDHFR) as a model, but less studies have used the enzyme from Homo sapiens DHFR (hsDHFR). Each enzyme maintains
a short and narrow distribution of hydride donor-acceptor distances
(DAD) at the tunneling ready state (TRS). Evolution of the enzyme
was previously studied in ecDHFR where three key sites were identified
as important to the catalyzed reaction. The corresponding sites in
hsDHFR are F28, 62-PEKN, and 26-PPLR. Each of these sites was studied
here through the creation of mutant variants of the enzyme and measurements
of the temperature dependence of the intrinsic kinetic isotope effects
(KIEs) on the reaction. F28 is mutated first to M (F28M) and then
to the L of the bacterial enzyme (F28L). The KIEs of the F28M variant
are larger and more temperature-dependent than wild-type (WT), suggesting
a broader and longer average DAD at the TRS. To more fully mimic ecDHFR,
we also study a triple mutant of the human enzyme (F32L-PP26N-PEKN62G).
Remarkably, the intrinsic KIEs, while larger in magnitude, are temperature-independent
like the WT enzymes. We also construct deletion mutations of hsDHFR
removing both the 62-PEKN and 26-PPLR sequences. The results mirror
those described previously for insertion mutants of ecDHFR. Taken
together, these results suggest a balancing act during DHFR evolution
between achieving an optimal TRS for hydride transfer and preventing
product inhibition arising from the different intercellular pools
of NADPH and NADP+ in prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jennifer Lin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin Francis
- Texas A&M University-Kingsville, Kingsville, Texas 78363, United States
| | | |
Collapse
|
2
|
Jung J, Czabany T, Wilding B, Klempier N, Nidetzky B. Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli. J Biol Chem 2016; 291:25411-25426. [PMID: 27754868 DOI: 10.1074/jbc.m116.747014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/01/2016] [Indexed: 11/06/2022] Open
Abstract
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = -80.3 kJ/mol; -TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4-7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s-1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s-1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = -2.3 kJ/mol; -TΔS = -19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data.
Collapse
Affiliation(s)
- Jihye Jung
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14.,the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| | - Tibor Czabany
- the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| | - Birgit Wilding
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14.,the Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Norbert Klempier
- the Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Bernd Nidetzky
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14, .,the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| |
Collapse
|
3
|
Abstract
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions.
Collapse
Affiliation(s)
- P Singh
- University of Iowa, Iowa City, IA, United States
| | - Z Islam
- University of Iowa, Iowa City, IA, United States
| | - A Kohen
- University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
4
|
Rivera NR, Moore J, Schenk DJ, Wang H, Hesk D, Mergelsberg I. Enzymatic approach toward the synthesis of isotopically labeled ( R )-9-(2-hydroxypropyl)adenine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Francis K, Sapienza PJ, Lee AL, Kohen A. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase. Biochemistry 2016; 55:1100-6. [PMID: 26813442 DOI: 10.1021/acs.biochem.5b00945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.
Collapse
Affiliation(s)
- Kevin Francis
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Wang Z, Antoniou D, Schwartz SD, Schramm VL. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies. Biochemistry 2015; 55:157-66. [PMID: 26652185 DOI: 10.1021/acs.biochem.5b01241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with (13)C, (15)N, and nonexchangeable (2)H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Dimitri Antoniou
- Department of Chemistry and Biochemistry, University of Arizona , P.O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona , P.O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
7
|
Singh P, Francis K, Kohen A. Network of remote and local protein dynamics in dihydrofolate reductase catalysis. ACS Catal 2015; 5:3067-3073. [PMID: 27182453 DOI: 10.1021/acscatal.5b00331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics calculations and bionformatic studies of dihydrofolate reductase (DHFR) have suggested a network of coupled motions across the whole protein that is correlated to the reaction coordinate. Experimental studies demonstrated that distal residues G121, M42 and F125 in E. coli DHFR participate in that network. The missing link in our understanding of DHFR catalysis is the lack of a mechanism by which such remote residues can affect the catalyzed chemistry at the active site. Here, we present a study of the temperature dependence of intrinsic kinetic isotope effects (KIEs) that indicates synergism between a remote residue in that dynamic network, G121, and the active site's residue I14. The intrinsic KIEs for the I14A-G121V double mutant showed steeper temperature dependence (ΔEa(T-H)) than expected from comparison of the wild type and two single mutants. That effect was non-additive, i.e., ΔEa(T-H)G121V +ΔEa(T-H) I14A < ΔEa(T-H) double mutant, which indicates a synergism between the two residues. This finding links the remote residues in the network under investigation to the enzyme's active site, providing a mechanism by which these residues can be coupled to the catalyzed chemistry. This experimental evidence validates calculations proposing that both remote and active site residues constitute a network of coupled promoting motions correlated to the bond activation step (C-H→C hydride transfer in this case). Additionally, the effect of I14A and G121V mutations on single turnover rates was additive rather than synergistic. Although single turnover rate measurements are more readily available and thus more popular than assessing intrinsic kinetic isotope effects, the current finding demonstrates that for these rates, which in DHFR reflect several microscopic rate constants, can fall short of revealing the nature of the C-H bond activation per se.
Collapse
Affiliation(s)
- Priyanka Singh
- The Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin Francis
- The Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Wang Z, Singh P, Czekster CM, Kohen A, Schramm VL. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. J Am Chem Soc 2014; 136:8333-41. [PMID: 24820793 PMCID: PMC4063187 DOI: 10.1021/ja501936d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The role of fast protein dynamics
in enzyme catalysis has been
of great interest in the past decade. Recent “heavy enzyme”
studies demonstrate that protein mass-modulated vibrations are linked
to the energy barrier for the chemical step of catalyzed reactions.
However, the role of fast dynamics in the overall catalytic mechanism
of an enzyme has not been addressed. Protein mass-modulated effects
in the catalytic mechanism of Escherichia coli dihydrofolate
reductase (ecDHFR) are explored by isotopic substitution (13C, 15N, and non-exchangeable 2H) of the wild-type
ecDHFR (l-DHFR) to generate a vibrationally perturbed
“heavy ecDHFR” (h-DHFR). Steady-state,
pre-steady-state, and ligand binding kinetics, intrinsic kinetic isotope
effects (KIEint) on the chemical step, and thermal unfolding
experiments of both l- and h-DHFR
show that the altered protein mass affects the conformational ensembles
and protein–ligand interactions, but does not affect the hydride
transfer at physiological temperatures (25–45 °C). Below
25 °C, h-DHFR shows altered transition state
(TS) structure and increased barrier-crossing probability of the chemical
step compared with l-DHFR, indicating temperature-dependent
protein vibrational coupling to the chemical step. Protein mass-modulated
vibrations in ecDHFR are involved in TS interactions at cold temperatures
and are linked to dynamic motions involved in ligand binding at physiological
temperatures. Thus, mass effects can affect enzymatic catalysis beyond
alterations in promoting vibrations linked to chemistry.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | | | |
Collapse
|
9
|
Francis K, Kohen A. Standards for the reporting of kinetic isotope effects in enzymology. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.pisc.2014.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Singh P, Sen A, Francis K, Kohen A. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. J Am Chem Soc 2014; 136:2575-82. [PMID: 24450297 PMCID: PMC3985941 DOI: 10.1021/ja411998h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Enzyme catalysis
has been studied extensively, but the role of
enzyme dynamics in the catalyzed chemical conversion is still an enigma.
The enzyme dihydrofolate reductase (DHFR) is often used as a model
system to assess a network of coupled motions across the protein that
may affect the catalyzed chemical transformation. Molecular dynamics
simulations, quantum mechanical/molecular mechanical studies, and
bioinformatics studies have suggested the presence of a “global
dynamic network” of residues in DHFR. Earlier studies of two
DHFR distal mutants, G121V and M42W, indicated that these residues
affect the chemical step synergistically. While this finding was in
accordance with the concept of a network of functional motions across
the protein, two residues do not constitute a network. To better define
the extent and limits of the proposed network, the current work studied
two remote residues predicted to be part of the same network: W133
and F125. The effect of mutations in these residues on the nature
of the chemical step was examined via measurements of the temperature-dependence
of the intrinsic kinetic isotope effects (KIEs) and other kinetic
parameters, and double mutants were used to tie the findings to G121
and M42. The findings indicate that residue F125, which was implicated
by both calculations and bioinformatic methods, is a part of the same
global dynamic network as G121 and M42, while W133, implicated only
by bioinformatics, is not. These findings extend our understanding
of the proposed network and the relations between functional and genomic
couplings. Delineating that network illuminates the need to consider
remote residues and protein structural dynamics in the rational design
of drugs and of biomimetic catalysts.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | | | | | | |
Collapse
|
11
|
Wang Z, Abeysinghe T, Finer-Moore JS, Stroud RM, Kohen A. A remote mutation affects the hydride transfer by disrupting concerted protein motions in thymidylate synthase. J Am Chem Soc 2012; 134:17722-30. [PMID: 23034004 DOI: 10.1021/ja307859m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of protein flexibility in enzyme-catalyzed activation of chemical bonds is an evolving perspective in enzymology. Here we examine the role of protein motions in the hydride transfer reaction catalyzed by thymidylate synthase (TSase). Being remote from the chemical reaction site, the Y209W mutation of Escherichia coli TSase significantly reduces the protein activity, despite the remarkable similarity between the crystal structures of the wild-type and mutant enzymes with ligands representing their Michaelis complexes. The most conspicuous difference between these two crystal structures is in the anisotropic B-factors, which indicate disruption of the correlated atomic vibrations of protein residues in the mutant. This dynamically altered mutant allows a variety of small thiols to compete for the reaction intermediate that precedes the hydride transfer, indicating disruption of motions that preorganize the protein environment for this chemical step. Although the mutation causes higher enthalpy of activation of the hydride transfer, it only shows a small effect on the temperature dependence of the intrinsic KIE, suggesting marginal changes in the geometry and dynamics of the H-donor and -acceptor at the tunneling ready state. These observations suggest that the mutation disrupts the concerted motions that bring the H-donor and -acceptor together during the pre- and re-organization of the protein environment. The integrated structural and kinetic data allow us to probe the impact of protein motions on different time scales of the hydride transfer reaction within a complex enzymatic mechanism.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727, USA
| | | | | | | | | |
Collapse
|
12
|
Sen A, Stojković V, Kohen A. Synthesis of radiolabeled nicotinamide cofactors from labeled pyridines: versatile probes for enzyme kinetics. Anal Biochem 2012; 430:123-9. [PMID: 22922383 DOI: 10.1016/j.ab.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022]
Abstract
(14)C-labeled nicotinamide cofactors are widely employed in biomedical investigations, for example, to delineate metabolic pathways, to elucidate enzymatic mechanisms, and as substrates in kinetic isotope effect (KIE) experiments. The (14)C label has generally been located remote from the reactive position, frequently at the adenine ring. Rising costs of commercial precursors and disruptions in the availability of enzymes required for established syntheses have recently made the preparation of labeled nicotinamides such as [Ad-(14)C]NADPH unviable. Here, we report the syntheses and characterization of several alternatives: [carbonyl-(14)C]NADPH, 4R-[carbonyl-(14)C, 4-(2)H]NADPH, and [carbonyl-(14)C, 4-(2)H(2)]NADPH. The new procedures use [carbonyl-(14)C]nicotinamide as starting material, because it is significantly cheaper than other commercial (14)C precursors of NADPH, and require only one commercially available enzyme to prepare NAD(P)(+) and NAD(P)H. The proximity of carbonyl-(14)C to the reactive center raises the risk of an inopportune (14)C isotope effect. This concern has been alleviated via competitive KIE measurements with Escherichia coli dihydrofolate reductase (EcDHFR) that use this specific carbonyl-(14)C NADPH. A combination of binding isotope effect and KIE measurements yielded no significant (12)C/(14)C isotope effect at the amide carbonyl (KIE=1.003±0.004). The reported procedure provides a high-yield, high-purity, and cost-effective alternative to labeled nicotinamide cofactors synthesized by previously published routes.
Collapse
Affiliation(s)
- Arundhuti Sen
- Department of Chemistry, University of Iowa, Iowa City, IA 52245, USA
| | | | | |
Collapse
|
13
|
Evans RM, Behiry EM, Tey LH, Guo J, Loveridge EJ, Allemann RK. Catalysis by Dihydrofolate Reductase from the Psychropiezophile Moritella profunda. Chembiochem 2010; 11:2010-7. [DOI: 10.1002/cbic.201000341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Yahashiri A, Sen A, Kohen A. Microscale synthesis and kinetic isotope effect analysis of ( 4R)-[Ad- 14C, 4- 2H] NADPH and ( 4R)-[Ad- 3H,4- 2H] NADPH. J Labelled Comp Radiopharm 2009; 52:463-466. [PMID: 26045633 DOI: 10.1002/jlcr.1660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a one-pot chemo-enzymatic microscale synthesis of NADPH with two different patterns of isotopic labels: (4R)-[Ad-14C,4-2H] NADPH and (4R)-[Ad-3H,4-2H] NADPH. These co-factors are required by an enormous range of enzymes, and isotopically labeled nicotinamides are consequently of significant interest to researchers. In the current procedure, [Ad-14C] NAD+ and [Ad-3H] NAD+ were phosphorylated by NAD+ kinase to produce [Ad-14C] NADP+ and [Ad-3H] NADP+, respectively. Thermoanaerobium brockii alcohol dehydrogenase was then used to stereospecifically transfer deuterium from C2 of isopropanol to the re face of C4 of NADP+. After purification by HPLC, NMR analysis indicated the deuterium content at the 4R position is more than 99.7 %. The labeled cofactors were then used to successfully and sensitively measure kinetic isotope effects for R67 dihydrofolate reductase, providing strong evidence for the utility of this synthetic methodology.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Arundhuti Sen
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Wang L, Goodey NM, Benkovic SJ, Kohen A. The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase. Philos Trans R Soc Lond B Biol Sci 2006; 361:1307-15. [PMID: 16873118 PMCID: PMC1647312 DOI: 10.1098/rstb.2006.1871] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residues M42 and G121 of Escherichia coli dihydrofolate reductase (ecDHFR) are on opposite sides of the catalytic centre (15 and 19 A away from it, respectively). Theoretical studies have suggested that these distal residues might be part of a dynamics network coupled to the reaction catalysed at the active site. The ecDHFR mutant G121V has been extensively studied and appeared to have a significant effect on rate, but only a mild effect on the nature of H-transfer. The present work examines the effect of M42W on the physical nature of the catalysed hydride transfer step. Intrinsic kinetic isotope effects (KIEs), their temperature dependence and activation parameters were studied. The findings presented here are in accordance with the environmentally coupled hydrogen tunnelling. In contrast to the wild-type (WT), fluctuations of the donor-acceptor distance were required, leading to a significant temperature dependence of KIEs and deflated intercepts. A comparison of M42W and G121V to the WT enzyme revealed that the reduced rates, the inflated primary KIEs and their temperature dependences resulted from an imperfect potential surface pre-arrangement relative to the WT enzyme. Apparently, the coupling of the enzyme's dynamics to the reaction coordinate was altered by the mutation, supporting the models in which dynamics of the whole protein is coupled to its catalysed chemistry.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, University of IowaIowa City, IA 52242, USA
| | - Nina M Goodey
- Department of Chemistry, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Amnon Kohen
- Department of Chemistry, University of IowaIowa City, IA 52242, USA
- Author for correspondence ()
| |
Collapse
|
16
|
Wang L, Goodey NM, Benkovic SJ, Kohen A. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc Natl Acad Sci U S A 2006; 103:15753-8. [PMID: 17032759 PMCID: PMC1635075 DOI: 10.1073/pnas.0606976103] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most intriguing questions in modern enzymology is whether enzyme dynamics evolved to enhance the catalyzed chemical transformation. In this study, dihydrofolate reductase, a small monomeric protein that catalyzes a single C-H-C transfer, is used as a model system to address this question. Experimental and computational studies have proposed a dynamic network that includes two residues remote from the active site (G121 and M42). The current study compares the nature of the H-transfer step of the WT enzyme, two single mutants, and their double mutant. The contribution of quantum mechanical tunneling and enzyme dynamics to the H-transfer step was examined by determining intrinsic kinetic isotope effects, their temperature dependence, and activation parameters. Different patterns of environmentally coupled tunneling were found for these four enzymes. The findings indicate that the naturally evolved WT dihydrofolate reductase requires no donor-acceptor distance fluctuations (no gating). Both single mutations affect the rearrangement of the system before tunneling, so some gating is required, but the overall nature of the environmentally coupled tunneling appears similar to that of the WT enzyme. The double mutation, on the other hand, seems to cause a major change in the nature of H transfer, leading to poor reorganization and substantial gating. These findings support the suggestion that these distal residues synergistically affect the H transfer at the active site of the enzyme. This observation is in accordance with the notion that these remote residues are part of a dynamic network that is coupled to the catalyzed chemistry.
Collapse
Affiliation(s)
- Lin Wang
- *Department of Chemistry, University of Iowa, Iowa City, IA 52242; and
| | - Nina M. Goodey
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Stephen J. Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| | - Amnon Kohen
- *Department of Chemistry, University of Iowa, Iowa City, IA 52242; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
17
|
Wang L, Tharp S, Selzer T, Benkovic SJ, Kohen A. Effects of a distal mutation on active site chemistry. Biochemistry 2006; 45:1383-92. [PMID: 16445280 PMCID: PMC2553318 DOI: 10.1021/bi0518242] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies of Escherichia coli dihydrofolate reductase (ecDHFR) have demonstrated that residue G121, which is 19 A from the catalytic center, is involved in catalysis, and long distance dynamical motions were implied. Specifically, the ecDHFR mutant G121V has been extensively studied by various experimental and theoretical tools, and the mutation's effect on kinetic, structural, and dynamical features of the enzyme has been explored. This work examined the effect of this mutation on the physical nature of the catalyzed hydride transfer step by means of intrinsic kinetic isotope effects (KIEs), their temperature dependence, and activation parameters as described previously for wild type ecDHFR [Sikorski, R. S., et al. (2004) J. Am. Chem. Soc. 126, 4778-4779]. The temperature dependence of initial velocities was used to estimate activation parameters. Isotope effects on the preexponential Arrhenius factors, and the activation energy, could be rationalized by an environmentally coupled hydrogen tunneling model, similar to the one used for the wild-type enzyme. Yet, in contrast to that in the wild type, fluctuations of the donor-acceptor distance were now required. Secondary (2 degrees ) KIEs were also measured for both H- and D-transfer, and as in the case of the wild-type enzyme, no coupled motion was detected. Despite these similarities, the reduced rates, the slightly inflated primary (1 degrees ) KIEs, and their temperature dependence, together with relatively deflated 2 degrees KIEs, indicate that the potential surface prearrangement was not as ideal as for the wild-type enzyme. These findings support theoretical studies suggesting that the G121V mutation led to a different conformational ensemble of reactive states and less effective rearrangement of the potential surface but has an only weak effect on H-tunneling.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Scott Tharp
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Tzvia Selzer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
18
|
Agrawal N, Mihai C, Kohen A. Microscale synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate as a cofactor for thymidylate synthase. Anal Biochem 2004; 328:44-50. [PMID: 15081906 DOI: 10.1016/j.ab.2004.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/17/2022]
Abstract
A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.
Collapse
Affiliation(s)
- Nitish Agrawal
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
19
|
McCracken JA, Wang L, Kohen A. Synthesis of R and S tritiated reduced beta-nicotinamide adenine dinucleotide 2' phosphate. Anal Biochem 2004; 324:131-6. [PMID: 14654055 DOI: 10.1016/j.ab.2003.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotinamides are ubiquitous cofactors used by many biological systems as redox agents. Stereospecifically labeled cofactors are useful in many studies of nicotinamide-dependent enzymes. Enzyme-directed synthesis of these cofactors is rather common but their stability imposes significant challenges on yield, purity, and preservation. This paper presents the stereospecific synthesis of reduced R- and S-[4-3H] beta-nicotinamide adenine dinucleotide 2' phosphate (NADPH). The method of Valera et al. [Biochem. Biophys. Res. Commun. 148 (1987) 515] was modified to a synthetic procedure that produces both isotopic diastereomers within 2h with an improved yield of 75-90% after purification and lyophilization. In the synthesis, [4-3H]NADP+ was generated as an intermediate (which can be isolated if desired). The specific radioactivities reported here are 2.7 and 1.1 Ci/mmol for the S and R diastereomers, respectively. Specific radioactivities ranging from carrier-free to trace labeling can be achieved with a minor change to the procedure.
Collapse
|
20
|
Sikorski RS, Wang L, Markham KA, Rajagopalan PTR, Benkovic SJ, Kohen A. Tunneling and Coupled Motion in the Escherichia coli Dihydrofolate Reductase Catalysis. J Am Chem Soc 2004; 126:4778-9. [PMID: 15080672 DOI: 10.1021/ja031683w] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H-transfer was studied in the complex kinetic cascade of dihydrofolate reductase. Intrinsic kinetic isotope effects, their temperature dependence, and other temperature-dependent parameters indicated H-tunneling, but no 1 degrees to 2 degrees coupled motion. The data also suggested environmentally coupled tunneling and commitment to catalysis on pre-steady-state isotope effects.
Collapse
Affiliation(s)
- R Steven Sikorski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|