1
|
Bickner AN, Champion MM, Hummon AB, Bruening ML. Electroblotting through a tryptic membrane for LC-MS/MS analysis of proteins separated in electrophoretic gels. Analyst 2021; 145:7724-7735. [PMID: 33000802 DOI: 10.1039/d0an01380c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Digestion of proteins separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) remains a popular method for protein identification using mass-spectrometry based proteomics. Although robust and routine, the in-gel digestion procedure is laborious and time-consuming. Electroblotting to a capture membrane prior to digestion reduces preparation steps but requires on-membrane digestion that yields fewer peptides than in-gel digestion. This paper develops direct electroblotting through a trypsin-containing membrane to a capture membrane to simplify extraction and digestion of proteins separated by SDS-PAGE. Subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) identifies the extracted peptides. Analysis of peptides from different capture membrane pieces shows that electrodigestion does not greatly disturb the spatial resolution of a standard protein mixture separated by SDS-PAGE. Electrodigestion of an Escherichia coli (E. coli) cell lysate requires four hours of total sample preparation and results in only 13% fewer protein identifications than in-gel digestion, which can take 24 h. Compared to simple electroblotting and protein digestion on a poly(vinylidene difluoride) (PVDF) capture membrane, adding a trypsin membrane to the electroblot increases the number of protein identifications by 22%. Additionally, electrodigestion experiments using capture membranes coated with polyelectrolyte layers identify a higher fraction of small proteolytic peptides than capture on PVDF or in-gel digestion.
Collapse
Affiliation(s)
- A N Bickner
- Department of Chemistry and Biochemistry University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | |
Collapse
|
2
|
Takemori A, Butcher DS, Harman VM, Brownridge P, Shima K, Higo D, Ishizaki J, Hasegawa H, Suzuki J, Yamashita M, Loo JA, Loo RRO, Beynon RJ, Anderson LC, Takemori N. PEPPI-MS: Polyacrylamide-Gel-Based Prefractionation for Analysis of Intact Proteoforms and Protein Complexes by Mass Spectrometry. J Proteome Res 2020; 19:3779-3791. [PMID: 32538093 DOI: 10.1021/acs.jproteome.0c00303] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prefractionation of complex mixtures of proteins derived from biological samples is indispensable for proteome analysis via top-down mass spectrometry (MS). Polyacrylamide gel electrophoresis (PAGE), which enables high-resolution protein separation based on molecular size, is a widely used technique in biochemical experiments and has the potential to be useful in sample fractionation for top-down MS analysis. However, the lack of a means to efficiently recover the separated proteins in-gel has always been a barrier to its use in sample prefractionation. In this study, we present a novel experimental workflow, called Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS ("PEPPI-MS"), which allows top-down MS of PAGE-separated proteins. The optimization of Coomassie brilliant blue staining followed by the passive extraction step in the PEPPI-MS workflow enabled the efficient recovery of proteins, separated on commercial precast gels, from a wide range of molecular weight regions in under 10 min. Two-dimensional separation combining offline PEPPI-MS with online reversed-phase liquid chromatographic separation resulted in identification of over 1000 proteoforms recovered from the target region of the gel (≤50 kDa). Given the widespread availability and relatively low cost of traditional sodium dodecyl sulfate (SDS)-PAGE equipment, the PEPPI-MS workflow will be a powerful prefractionation strategy for top-down proteomics.
Collapse
Affiliation(s)
- Ayako Takemori
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon 791-0295, Ehime, Japan
| | - David S Butcher
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Victoria M Harman
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philip Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Keisuke Shima
- Shimadzu Corporation, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific K.K., Yokohama 221-0022, Kanagawa, Japan
| | - Jun Ishizaki
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, UCLA/DOE Institute for Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, UCLA/DOE Institute for Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Robert J Beynon
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Nobuaki Takemori
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon 791-0295, Ehime, Japan
| |
Collapse
|
3
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
4
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
5
|
Abstract
Identification of proteins by mass spectrometry is crucial for better understanding of many biological, biochemical, and biomedical processes. Here we describe two methods for the identification of electroblotted proteins by on-membrane digestion prior to analysis by mass spectrometry. These on-membrane methods take approximately half the time of in-gel digestion and provide better digestion efficiency, due to the better accessibility of the protease to the proteins adsorbed onto the nitrocellulose, and better protein sequence coverage, especially for membrane proteins where large and hydrophobic peptides are commonly present.
Collapse
|
6
|
De La Mora-De La Mora I, Torres-Larios A, Mendoza-Hernández G, Enriquez-Flores S, Castillo-Villanueva A, Mendez ST, Garcia-Torres I, Torres-Arroyo A, Gómez-Manzo S, Marcial-Quino J, Oria-Hernández J, López-Velázquez G, Reyes-Vivas H. The E104D mutation increases the susceptibility of human triosephosphate isomerase to proteolysis. Asymmetric cleavage of the two monomers of the homodimeric enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2702-11. [PMID: 24056040 DOI: 10.1016/j.bbapap.2013.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 11/27/2022]
Abstract
The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.
Collapse
|
7
|
Li GQ, Shao J, Guo CG, Dong JY, Fan LY, Cao CX. A simple monolithic column electroelution for protein recovery from gel electrophoresis. Anal Biochem 2012; 430:24-31. [DOI: 10.1016/j.ab.2012.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022]
|
8
|
Hapuarachchi S, Fodor S, Apostol I, Huang G. Use of capillary electrophoresis–sodium dodecyl sulfate to monitor disulfide scrambled forms of an Fc fusion protein during purification process. Anal Biochem 2011; 414:187-95. [DOI: 10.1016/j.ab.2011.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 12/13/2022]
|
9
|
Brumbaugh K, Johnson W, Liao WC, Lin MS, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R. Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 2011; 717:3-43. [PMID: 21370022 DOI: 10.1007/978-1-61779-024-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.
Collapse
|
10
|
Razunguzwa TT, Biddle A, Anderson H, Zhan D, Powell M. Development of a microfluidics-based gel protein recovery system. Electrophoresis 2009; 30:4020-8. [DOI: 10.1002/elps.200900485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
A unique proteolytic fragment of alpha1-antitrypsin is elevated in ductal fluid of breast cancer patient. Breast Cancer Res Treat 2009; 123:73-86. [PMID: 19902353 DOI: 10.1007/s10549-009-0625-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
By comparison of mass spectra from a small cohort of nipple aspiration fluids (NAF), we previously discovered a panel of five candidate breast cancer biomarkers among them an unidentified 4.7 kD peptide BF5. The purposes of the present study were to verify the presence of BF5 in an independent cohort; to determine the protein identity of BF5; and to provide insight into the biology of BF5 production and elevation in tumor-associated NAF. We prospectively collected bilaterally matched NAF from patients with unilateral Stage I/II breast cancer (IBC-31), ductal carcinoma in situ (DCIS-6), atypical ductal hyperplasia (ADH-5), and presumed healthy women who came to routine mammography and had a normal exam (31). Following the consolidation of its cancer-associated expression on SELDI-mass spectrometry, BF5 was isolated by gel electrophoresis and sequenced by tandem mass spectrometry. BF5 was elevated in 15-25% of women with IBC, DCIS, or ADH vs. 0% of controls. This elevation was restricted to the affected breasts. BF5 was identified as 41/42-aa C-terminal peptide of alpha1-antitrypsin (AAT), the principle inhibitor of serine protease neutrophile elastase. The full length AAT showed a consistent expression pattern as C-41/42, and C-41/42 can be generated in vitro by MMP-7 cleavage. In conclusion, elevated C-41/42 is likely the result of elevated AAT synthesis, and the activity of specific MMPs present within the tumor. As other C-terminal fragments of AAT are reported to function as tumor-derived suppressors to the host immune-system, elevated C-41/42 may also be predictive of a poor outcome.
Collapse
|
12
|
Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. MASS SPECTROMETRY REVIEWS 2009; 28:816-843. [PMID: 19072760 DOI: 10.1002/mas.20204] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry (i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed.
Collapse
|
13
|
Abstract
Identification of proteins and characterization of posttranslational modifications are crucial steps for many biological, biochemical, and biomedical studies, and mass spectrometry has become the method of choice for these analyses. Here we describe two methods for the on-membrane digestion of proteins electroblotted onto nitrocellulose membranes prior to analysis by mass spectrometry. These on-membrane methods take approximately half the time of in-gel digestion and provide better digestion efficiency, due to the better accessibility of the protease to the proteins adsorbed onto the nitrocellulose, and better protein sequence coverage, especially for membrane proteins where large and hydrophobic peptides are commonly present.
Collapse
|
14
|
A paper-based electroelution system for protein recovery from stained sodium dodecyl sulfate–polyacrylamide gels. Anal Biochem 2008; 381:267-9. [DOI: 10.1016/j.ab.2008.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/16/2008] [Accepted: 03/17/2008] [Indexed: 11/22/2022]
|
15
|
Isolation of Ani s 5, an excretory–secretory and highly heat-resistant allergen useful for the diagnosis of Anisakis larvae sensitization. Parasitol Res 2008; 103:1231-3. [DOI: 10.1007/s00436-008-1105-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
16
|
Luque-Garcia JL, Zhou G, Spellman DS, Sun TT, Neubert TA. Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting. Mol Cell Proteomics 2007; 7:308-14. [PMID: 17938404 DOI: 10.1074/mcp.m700415-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a new approach for the identification and characterization by mass spectrometry of proteins that have been electroblotted onto nitrocellulose. Using this method (Blotting and Removal of Nitrocellulose (BARN)), proteins can be analyzed either as intact proteins for molecular weight determination or as peptides generated by on-membrane proteolysis. Acetone is used to dissolve the nitrocellulose and to precipitate the adsorbed proteins/peptides, thus removing the nitrocellulose which can interfere with MS analysis. This method offers improved protein coverage, especially for membrane proteins, such as uroplakins, because the extraction step after in-gel digestion is avoided. Moreover, removal of nitrocellulose from the sample solution allows sample analysis by both MALDI- and (LC) ESI-based mass spectrometers. Finally, we demonstrate the utility of BARN for the direct identification of soluble and membrane proteins after Western blotting, obtaining comparable or better results than with in-gel digestion.
Collapse
Affiliation(s)
- Jose L Luque-Garcia
- Kimmel Center for Biology and Medicine, Skirball Institute and Department of Pharmacology
| | | | | | | | | |
Collapse
|
17
|
Granvogl B, Plöscher M, Eichacker LA. Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 2007; 389:991-1002. [PMID: 17639354 DOI: 10.1007/s00216-007-1451-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/14/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
The proteomic characterization of proteins and protein complexes from cells and cell organelles is the next challenge for investigation of the cell. After isolation of the cell compartment, three steps have to be performed in the laboratory to yield information about the proteins present. The protein mixtures must be separated into single species, broken down into peptides, and, finally, identified by mass spectrometry. Most scientists engaged in proteomics separate proteins by electrophoresis. For characterization and identification of proteomes, mass spectrometry of peptides is the method of choice. To combine electrophoresis and mass spectrometry, sample preparation by "in-gel digestion" has been developed. Many procedures are available for in-gel digestion, which inspired us to review in-gel digestion approaches.
Collapse
Affiliation(s)
- Bernhard Granvogl
- Department für Biologie I, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80638, München, Germany
| | | | | |
Collapse
|
18
|
Brinkworth CS, Bourne DJ. Selected non-ionic biological detergents enhance signal intensity of intact bovine serum albumin by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:311-319. [PMID: 18192724 DOI: 10.1255/ejms.886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recently, we showed that the signal intensity of intact protein by matrix-assisted laser desorption/ionisation (MALDI) mass spectro-metry measurement can be enhanced at least an order of magnitude by the addition of Tween80 to the analyte solution. We did not ascertain whether this effect was limited to Tween80 or if it was more universal of biological detergents. This paper discusses our investigations into this question. A variety of chemically diverse detergents were added to analyte solutions containing bovine serum albumin (BSA) to determine whether there was significant signal enhancement. The addition of Tween20, Tween80, Triton X100 and Triton X-114 improved the attainable sensitivity of intact protein MALDI mass spectrometry compared to spectra acquired without detergent. In some cases there was considerable improvement in signal--for example, with Triton X-100 two charge states (the +1 and +2) of BSA (3.9 fmol) could easily be observed. Another advantage of this process is that the detergent can be added directly to the matrix solution reducing sample handling and preparation time. We propose this phenomenon results from the ability of these detergents to increase the solubility of the protein via hydrophobic and hydrophilic interactions between the detergent and protein. The increased solubility allows for more uniform deposition of the analyte/-matrix mixtures producing an evenly distributed layer of analyte especially useful for data acquisition using an automated laser firing sequence.
Collapse
Affiliation(s)
- Craig S Brinkworth
- Human Protection and Performance Division, Defence Science and Technology Organisation, Fishermans Bend, Victoria, Australia 3207.
| | | |
Collapse
|
19
|
Brinkworth CS, Bourne DJ. The effect of Tween80 on signal intensity of intact proteins by MALDI time-of-flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:102-5. [PMID: 17046277 DOI: 10.1016/j.jasms.2006.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/06/2006] [Accepted: 09/11/2006] [Indexed: 05/12/2023]
Abstract
Buffers and detergents are notorious for suppression of analyte signal in electrospray and MALDI mass spectrometry and, invariably, analysts will take steps to remove these contaminants before MS analysis. However, we have found serendipitously that protein signal with MALDI MS is improved by about an order of magnitude on the addition of small amounts of Tween80. Four charged states of BSA could easily be seen at less than 125 fmol/spot and with mixture of three proteins (BSA, trypsinogen, and protein A) the molecular ions could be detected on as little as 12.5 fmol of spotted material (per protein) using an automated laser firing sequence.
Collapse
Affiliation(s)
- Craig S Brinkworth
- Human Protection and Performance Division, Defence, Science, and Technology Organisation, Victoria, Australia.
| | | |
Collapse
|
20
|
Luque-Garcia JL, Zhou G, Sun TT, Neubert TA. Use of nitrocellulose membranes for protein characterization by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2006; 78:5102-8. [PMID: 16841935 PMCID: PMC2538422 DOI: 10.1021/ac060344t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an improved method for MALDI-MS analysis of proteins that have been electroblotted onto a nitrocellulose (NC) membrane. With this approach, electroblotted proteins can be analyzed directly for intact molecular weight determination or after on-membrane digestion by dissolution of the nitrocellulose in MALDI matrix solution containing 70% acetonitrile and 30% methanol. This solution helps maintain solubility of proteins and peptides while dissolving the NC membrane, which is dissolved by 100% acetone in other protocols. On-membrane tryptic digestion using this method requires half the time of in-gel digestion and results in fewer missed cleavages and better protein coverage. For the membrane proteins studied, bovine uroplakins II and III, the protein coverage was almost twice that provided by conventional in-gel digestion, and the transmembrane domains of both uroplakins were detected only after on-membrane digestion. We also demonstrated the compatibility with MALDI-MS of a new dye, MemCode, which is specifically designed for staining NC membrane-immobilized proteins and is faster and more sensitive than Ponceau-S. Our improved on-membrane digestion protocol greatly improves the study of soluble and, particularly strikingly, integral membrane proteins by mass spectrometry.
Collapse
Affiliation(s)
- Jose L. Luque-Garcia
- Department of Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ge Zhou
- Epithelial Biology Unit, Departments of Dermatology, Pharmacology and Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Tung-Tien Sun
- Epithelial Biology Unit, Departments of Dermatology, Pharmacology and Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A. Neubert
- Department of Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
21
|
Methogo RM, Dufresne-Martin G, Leclerc P, Leduc R, Klarskov K. Mass Spectrometric Peptide Fingerprinting of Proteins after Western Blotting on Polyvinylidene Fluoride and Enhanced Chemiluminescence Detection. J Proteome Res 2005; 4:2216-24. [PMID: 16335969 DOI: 10.1021/pr050014+] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combined use of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry has become a powerful and widely used tool in proteome studies. Following separation by electrophoresis, proteins can be transferred to an inert support such as polyvinylidene fluoride (PVDF) or nitrocellulose (NC) for the visualization of individual or specific classes of proteins by immunochemical detection methods. We developed a method that allows the mass spectrometric analysis of peptides derived from proteins detected by Western blotting on PVDF. Proteolysis buffer containing either dimethyl formamide (DMF) or Triton X-100 to recover peptides amenable to mass spectrometry was investigated. Although either one can be used, the buffer containing DMF required less sample handling prior to mass spectrometry. The approach was tested using commercially available proteins and serine-phosphorylated proteins from an HEK-293 nuclear extract.
Collapse
MESH Headings
- Blotting, Western
- Carbon/pharmacology
- Cell Line
- Cell Nucleus/metabolism
- Collodion/chemistry
- Databases, Protein
- Detergents/pharmacology
- Dimethylformamide/pharmacology
- Electrophoresis
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunochemistry
- Luminescence
- Luminescent Measurements
- Mass Spectrometry/methods
- Membranes, Artificial
- Octoxynol/pharmacology
- Peptide Mapping/methods
- Peptides/chemistry
- Phosphorylation
- Polyvinyls/chemistry
- Proteome
- Proteomics/methods
- Serine/chemistry
- Sodium Dodecyl Sulfate/chemistry
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Ruth Menque Methogo
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
22
|
Li J, Orlandi R, White CN, Rosenzweig J, Zhao J, Seregni E, Morelli D, Yu Y, Meng XY, Zhang Z, Davidson NE, Fung ET, Chan DW. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem 2005; 51:2229-35. [PMID: 16223889 DOI: 10.1373/clinchem.2005.052878] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously selected a panel of 3 breast cancer biomarkers (BC1, BC2, and BC3) from serum samples collected at a single hospital based on their collective contribution to the optimal separation of breast cancer patients and noncancer controls by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The identities and general applicability of these markers, however, were unknown. In this study, we performed protein expression profiling on samples obtained from a second hospital, included a greater number of ductal carcinoma in situ (DCIS) cases, and performed purification and identification of the 2 confirmed markers. METHODS Using a case-control study design, we performed protein expression profiling on serum samples from the National Cancer Institute (Milan, Italy). The validation sample cohort consisted of 61 women with locally invasive breast cancer, 32 with DCIS, 37 with various benign breast diseases (including 13 atypical), and 46 age-matched apparently healthy women (age range, 44-68 years). Validated biomarkers were purified and identified with serial chromatography, 1-dimensional gel electrophoresis, in-gel ASP-N digestion, peptide mass fingerprinting, and tandem mass peptide sequencing. RESULTS The BC3 and BC2 expression patterns in this sample set were consistent with the first study sample set. BC3 and BC2 were identified to be complement component C3a(desArg) and a C-terminal-truncated form of C3a(desArg), respectively. CONCLUSIONS Evaluation of biomarkers in independent sample sets can help determine the broader utility of candidate markers, and protein identification permits understanding of their molecular basis. C3a(desArg) appears to lack specificity among patients with benign diseases, limiting its utility as a stand-alone tumor marker, but it may still be useful in a multimarker panel for early detection of breast cancer.
Collapse
Affiliation(s)
- Jinong Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stutz H. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis 2005; 26:1254-90. [PMID: 15776483 DOI: 10.1002/elps.200410130] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High throughput, outstanding certainty in peptide/protein identification, exceptional resolution, and quantitative information are essential pillars in proteome research. Capillary electrophoresis (CE) coupled to mass spectrometry (MS) has proven to meet these requirements. Soft ionization techniques, such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), have paved the way for the story of success of CE-MS in the analysis of biomolecules and both approaches are subject of discussion in this article. Meanwhile, CE-MS is far away from representing a homogeneous field. Therefore the review will cover a vast area including the coupling of different modes of CE (capillary zone electrophoresis, capillary isoelectric foscusing, capillary electrochromatography, micellar electrokinetic chromatography, nonaqueous capillary electrophoresis) to MS as well as on-line preconcentration techniques (transient capillary isotachophoresis, solid-phase extraction, membrane preconcentration) applied to compensate for restricted detection sensitivity. Special attention is given to improvements in interfacing, namely addressing nanospray and coaxial sheath liquid design. Peptide mapping, collision-induced dissociation with subsequent tandem MS, and amendments in mass accuracy of instruments improve information validity gained from MS data. With 2-D on-line coupling of liquid chromatography (LC) and CE a further topic will be discussed. A special section is dedicated to recent attempts in establishing CE-ESI-MS in proteomics, in the clinical and diagnostic field, and in the food sector.
Collapse
Affiliation(s)
- Hanno Stutz
- University of Salzburg, Department of Molecular Biology, Division of Chemistry, Salzburg, Austria.
| |
Collapse
|
24
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2004; 39:1383-1394. [PMID: 15532071 PMCID: PMC7166839 DOI: 10.1002/jms.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of mass spectrometry. Each bibliography is divided into 11 sections: 1 Books, Reviews & Symposia; 2 Instrumental Techniques & Methods; 3 Gas Phase Ion Chemistry; 4 Biology/Biochemistry: Amino Acids, Peptides & Proteins; Carbohydrates; Lipids; Nucleic Acids; 5 Pharmacology/Toxicology; 6 Natural Products; 7 Analysis of Organic Compounds; 8 Analysis of Inorganics/Organometallics; 9 Surface Analysis; 10 Environmental Analysis; 11 Elemental Analysis. Within each section, articles are listed in alphabetical order with respect to author (5 Weeks journals ‐ Search completed at 8th. Sept. 2004)
Collapse
|
25
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447475 DOI: 10.1002/cfg.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|