1
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
2
|
Maksymiuk KM, Szudzik M, Gawryś-Kopczyńska M, Onyszkiewicz M, Samborowska E, Mogilnicka I, Ufnal M. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats. J Transl Med 2022; 20:470. [PMID: 36243862 PMCID: PMC9571686 DOI: 10.1186/s12967-022-03687-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Trimethylamine oxide (TMAO) is a biomarker in cardiovascular and renal diseases. TMAO originates from the oxidation of trimethylamine (TMA), a product of gut microbiota and manufacturing industries-derived pollutant, by flavin monooxygenases (FMOs). The effect of chronic exposure to TMA on cardiovascular and renal systems is undetermined. Methods Metabolic, hemodynamic, echocardiographic, biochemical and histopathological evaluations were performed in 12-week-old male SPRD rats receiving water (controls) or TMA (200 or 500 µM/day) in water for 18 weeks. TMA and TMAO levels, the expression of FMOs and renin-angiotensin system (RAS) genes were evaluated in various tissues. Results In comparison to controls, rats receiving high dose of TMA had significantly increased arterial systolic blood pressure (126.3 ± 11.4 vs 151.2 ± 19.9 mmHg; P = 0.01), urine protein to creatinine ratio (1.6 (1.5; 2.8) vs 3.4 (3.3; 4.2); P = 0.01), urine KIM-1 levels (2338.3 ± 732.0 vs. 3519.0 ± 953.0 pg/mL; P = 0.01), and hypertrophy of the tunica media of arteries and arterioles (36.61 ± 0.15 vs 45.05 ± 2.90 µm, P = 0.001 and 18.44 ± 0.62 vs 23.79 ± 2.60 µm, P = 0.006; respectively). Mild degeneration of renal bodies with glomerulosclerosis was also observed. There was no significant difference between the three groups in body weight, water-electrolyte balance, echocardiographic parameters and RAS expression. TMA groups had marginally increased 24 h TMA urine excretion, whereas serum levels and 24 h TMAO urine excretion were increased up to 24-fold, and significantly increased TMAO levels in the liver, kidneys and heart. TMA groups had lower FMOs expression in the kidneys. Conclusions Chronic exposure to TMA increases blood pressure and increases markers of kidney damage, including proteinuria and KIM-1. TMA is rapidly oxidized to TMAO in rats, which may limit the toxic effects of TMA on other organs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03687-y.
Collapse
Affiliation(s)
- Klaudia M Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Marta Gawryś-Kopczyńska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Maksymilian Onyszkiewicz
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Emilia Samborowska
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
3
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Song J, Huang M, Shi X, Li X, Chen X, He Z, Li J, Xu G, Zheng J. T329S Mutation in the FMO3 Gene Alleviates Lipid Metabolic Diseases in Chickens in the Late Laying Period. Animals (Basel) 2021; 12:ani12010048. [PMID: 35011153 PMCID: PMC8749748 DOI: 10.3390/ani12010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The lipid deposition and health status of egg-laying hens is crucial to the development of the poultry industry. This study aimed to evaluate the effects of genetic variations in the flavin-containing monooxygenase 3 (FMO3) on the lipid metabolic diseases of laying hens during the late laying period. The results showed that the T329S mutation in FMO3 moderated the lipid parameters and decreased the atherosclerotic lesions and hepatic steatosis in laying hens with homozygous T329S mutation. In conclusion, the T329S mutation in FMO3 is closely associated with the improvement of lipid metabolic diseases in laying hens during the late laying period. The results of this study may contribute to overcoming the challenge of lipid metabolic diseases in laying hens during the late laying period. Abstract The T329S mutation in flavin-containing monooxygenase 3 (FMO3) impairs the trimethylamine (TMA) metabolism in laying hens. The TMA metabolic pathway is closely linked to lipid metabolic diseases, such as atherosclerosis and fatty liver disease. We aimed to evaluate the effects of the T329S mutation in FMO3 on lipid metabolism in chickens during the late laying period. We selected 18 FMO3 genotyped individuals (consisting of six AA, six AT, and six TT hens) with similar body weight and production performance. The lipid metabolism and deposition characteristics of the laying hens with different genotypes were compared. The T329S mutation moderated the serum-lipid parameters in TT hens compared to those in AA and AT hens from 49 to 62 weeks. Furthermore, it reduced the serum trimethylamine N-oxide concentrations and increased the serum total bile acid (p < 0.05) and related lipid transporter levels in TT hens. Moreover, it significantly (p < 0.01) decreased atherosclerotic lesions and hepatic steatosis in TT hens compared to those in the AA and AT hens. Our findings may help improve the health status in laying hens during the late laying period.
Collapse
Affiliation(s)
- Jianlou Song
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Mingyi Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xianyu Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China;
| | - Zhaoxiang He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Junying Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
- Correspondence: ; Tel.: +86-10-6273-2741; Fax: +86-10-6273-1080
| |
Collapse
|
5
|
Conover AE, Morando M, Zhao Y, Semones J, Hutchins DA, Webb EA. Alphaproteobacteria facilitate Trichodesmium community trimethylamine utilization. Environ Microbiol 2021; 23:6798-6810. [PMID: 34519133 DOI: 10.1111/1462-2920.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)-fixing cyanobacterium Trichodesmium create microscale nutrient-rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology of Trichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2 fixation in cultures of Trichodesmium without impairing growth rate, suggesting that Trichodesmium can use TMA as an alternate N source. In this study, 15 N-TMA DNA stable isotope probing (SIP) of a Trichodesmium enrichment was employed to further investigate TMA metabolism and determine whether TMA-N is incorporated directly or secondarily via cross-feeding facilitated by microbial associates. Herein, we identify two members of the marine Roseobacter clade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4 + ), which was subsequently used by Trichodesmium and the rest of the community. The results implicate microbiome-mediated carbon (C) and N transformations in modulating N2 fixation and thus highlight the involvement of host-associated heterotrophs in global biogeochemical cycling.
Collapse
Affiliation(s)
- Asa E Conover
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Michael Morando
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Yiming Zhao
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Jacob Semones
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - David A Hutchins
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Eric A Webb
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| |
Collapse
|
6
|
Hosseini ES, Tabar Heydar K. Preparation of two amide-bonded stationary phases and comparative evaluation under mixed-mode chromatography. J Sep Sci 2021; 44:2888-2897. [PMID: 34043871 DOI: 10.1002/jssc.202100291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
In this work, the conventional reactions were used to functionalize the silica surface with amide and hydrocarbon chain groups affording two different mixed-mode stationary phases (Sil-amide-C11 and Sil-C12-amide). The prepared stationary phases were analyzed by elemental analysis and thermogravimetric analysis. The retention of benzene, phenol, pyridine, and aniline was investigated and compared with synthesized and commercial columns, and this led to prove the existence of different interactions on the synthesized stationary phases. The mixed-mode stationary phases showed multiple interactions, and different chromatography modes were found under distinct chromatographic conditions. According to the type of amide group (either free or within the hydrocarbon chain), different interactions can be made on the columns. The alkylbenzenes and polycyclic aromatic hydrocarbons, as nonpolar hydrocarbons, were chromatographed under reversed-phase liquid chromatography modes, in which amide groups on the silica could efficiently separate polar analytes under hydrophilic interaction liquid chromatography mode in both prepared stationary phases. The performance of the columns was compared by the separation of the carboxylic acid group and biological samples. The bonding method and the type of amide group showed different interactions leading to different separation and performance.
Collapse
|
7
|
Hosseini ES, Tabar Heydar K. Preparation and evaluation a mixed-mode stationary phase with C 18 and 2-methylindole for HPLC. Biomed Chromatogr 2021; 35:e5068. [PMID: 33450065 DOI: 10.1002/bmc.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/11/2022]
Abstract
A modified C18 column (Silpr-2MI-C18) was prepared using 2-methylindole and C18 reagent. The extent of C18 hydrocarbon chain, conjugative rings and anion exchange site provided multiple retention mechanisms, including reversed-phase liquid chromatography (RPLC), π-π interaction, hydrophilic interaction liquid chromatography (HILIC) and anion exchange chromatography (AEC). The separation of protected amino acids was investigated on the commercial C18 and Silpr-2MI-C18 columns, while the chromatographic conditions, including methanol content and pH of the mobile phase, were studied. The separation arrangement of the hydrophilic amino acids was different on the Silpr-2MI-C18 column compared to the commercial C18 column under RPLC mode. Furthermore, these amino acids were separated on the Silpr-2MI-C18 column under HILIC mode. The modified C18 column was employed to separate amino acids, alkylbenzenes and polycyclic aromatic hydrocarbons under RPLC mode and inorganic anion under AEC mode. The results confirm that this new stationary phase of RPLC/HILIC/AEC has multiple interactions with different analytes. Effective retention of biological samples was found on the Silpr-2MI-C18 column by comparing the results obtained from the commercial C18 column.
Collapse
Affiliation(s)
- Elham Sadat Hosseini
- Faculty of Clean Technologies, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Kourosh Tabar Heydar
- Faculty of Clean Technologies, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
8
|
Neyer P, Bernasconi L, Fuchs JA, Allenspach MD, Steuer C. Derivatization-free determination of short-chain volatile amines in human plasma and urine by headspace gas chromatography-mass spectrometry. J Clin Lab Anal 2019; 34:e23062. [PMID: 31595561 PMCID: PMC7031570 DOI: 10.1002/jcla.23062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Short-chain volatile amines (SCVA) are an interesting compound class playing crucial roles in physiological and toxicological human settings. Dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), and triethylamine (TEA) were investigated in detail. METHODS Headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) was used for the simultaneous qualitative and quantitative determination of four SCVA in different human body fluids. Four hundred microliters of Li-heparin plasma and urine were analyzed after liberation of volatile amines under heated conditions in an aqueous alkaline and saline environment. Target analytes were separated on a volatile amine column and detected on a Thermo DSQ II mass spectrometer scheduled in single ion monitoring mode. RESULTS Chromatographic separation of selected SCVA was done within 7.5 minutes. The method was developed and validated with respect to accuracy, precision, recovery and stability. Accuracy and precision criteria were below 12% for all target analytes at low and high levels. The selected extraction procedure provided recoveries of more than 92% from both matrices for TMA, DEA and TEA. The recovery of DMA from Li-heparin plasma was lower but still in the acceptable range (>75%). The newly validated method was successfully applied to plasma and urine samples from healthy volunteers. Detected concentrations of endogenous metabolites DMA and TMA are comparable to already known reference ranges. CONCLUSION Herein, we describe the successful development and validation of a reliable and broadly applicable HS-GC-MS procedure for the simultaneous and quantitative determination of SCVA in human plasma and urine without relying on derivatization chemistry.
Collapse
Affiliation(s)
- Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jens A Fuchs
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Christian Steuer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Fiori J, Turroni S, Candela M, Brigidi P, Gotti R. Simultaneous HS-SPME GC-MS determination of short chain fatty acids, trimethylamine and trimethylamine N-oxide for gut microbiota metabolic profile. Talanta 2018; 189:573-578. [DOI: 10.1016/j.talanta.2018.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
11
|
Breath analysis as promising indicator of hemodialysis efficiency. Clin Exp Nephrol 2018; 23:251-257. [PMID: 30121801 DOI: 10.1007/s10157-018-1625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The measurement of trimethylamine and isoprene in exhaled breath collected from dialysed patients indicates the changes in concentration of both compounds during dialysis. The aim of the presented study was to confirm diagnostic usefulness of TMA and isoprene detected in breath, as potential biomarkers of hemodialysis efficiency. METHODS The samples of exhaled breath were collected from 22 dialyzed patients (9 women, 13 men) before and after hemodialysis (HD). All analyses were carried out using a gas chromatograph equipped with a mass spectrometer. Thermal desorption was used as breath sample enrichment method. RESULTS Chromatographic analysis of breath samples indicated statistically significant differences in trimethylamine (TMA) and 2-methyl-1,3-butadiene (isoprene) concentrations in patients' breath collected before and after HD. TMA concentrations measured in breath samples, before dialysis, ranged from 0.024 to 0.461 nmol/L. After dialysis, the values of detected TMA were lower versus output values and ranged from 0.008 to 0.050 nmol/L. Isoprene concentrations before dialysis were present in the range from 0.236 to 9.718 nmol/L, after dialysis in the range from 0.478 to 26.182 nmol/L. Additionally, the dependences of TMA and isoprene concentrations, detected in breath with renal efficiency parameters detected in blood, were studied. The relationships between TMA and urea (r = 0.67; p < 0.00001) and creatinine (r = 0.61; p = 0.00002) were checked. In case of isoprene considerably higher concentrations were observed after dialysis, but no statistically significant correlation of isoprene with blood parameters was noticed. CONCLUSION The observed decrease of TMA concentrations during dialysis could be useful as a measure of dialysis efficiency. The explanation of isoprene increase in breath during dialysis requires further investigation.
Collapse
|
12
|
Matsumoto M, Kitada Y, Shimomura Y, Naito Y. Bifidobacterium animalis subsp. lactis LKM512 reduces levels of intestinal trimethylamine produced by intestinal microbiota in healthy volunteers: A double-blind, placebo-controlled study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
The application of chromatographic breath analysis in the search of volatile biomarkers of chronic kidney disease and coexisting type 2 diabetes mellitus. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:103-110. [DOI: 10.1016/j.jchromb.2017.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
|
14
|
Zhao X, Zeisel SH, Zhang S. Rapid LC-MRM-MS assay for simultaneous quantification of choline, betaine, trimethylamine, trimethylamineN-oxide, and creatinine in human plasma and urine. Electrophoresis 2015; 36:2207-2214. [DOI: 10.1002/elps.201500055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Xueqing Zhao
- Nutrition Research Institute; University of North Carolina at Chapel Hill; Kannapolis NC USA
| | - Steven H Zeisel
- Nutrition Research Institute; University of North Carolina at Chapel Hill; Kannapolis NC USA
- Department of Nutrition, School of Public Health and School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Shucha Zhang
- Department of Neurosurgery; Brigham and Women's Hospital; Boston MA USA
| |
Collapse
|
15
|
Development and validation of a simple UHPLC–MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. J Pharm Biomed Anal 2015; 109:128-35. [DOI: 10.1016/j.jpba.2015.02.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
|
16
|
Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A 2013; 1301:179-89. [DOI: 10.1016/j.chroma.2013.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/22/2013] [Accepted: 05/05/2013] [Indexed: 01/17/2023]
|
17
|
Bain MA, Milne RW, Evans AM. Disposition and Metabolite Kinetics of Oral L-carnitine in Humans. J Clin Pharmacol 2013; 46:1163-70. [PMID: 16988205 DOI: 10.1177/0091270006292851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pharmacokinetics of L-carnitine and its metabolites were investigated in 7 healthy subjects following the oral administration of 0, 0.5, 1, and 2 g 3 times a day for 7 days. Mean plasma concentrations of L-carnitine across an 8-hour dose interval increased significantly (P < .05) from a baseline of 54.2 +/- 9.3 microM to 80.5 +/- 12.5 microM following the 0.5-g dose; there was no further increase at higher doses. There was a significant increase (P < .001) in the renal clearance of L-carnitine indicating saturation of tubular reabsorption. Trimethylamine plasma levels increased proportionately with L-carnitine dose, but there was no change in renal clearance. A significant increase in the plasma concentrations of trimethylamine-N-oxide from baseline was evident only for the 2-g dose of L-carnitine (from 34.5 +/- 2.0 to 149 +/- 145 microM), and its renal clearance decreased with increasing dose (P < .05). There was no evidence for nonlinearity in the metabolism of trimethylamine to trimethylamine-N-oxide. In conclusion, the pharmacokinetics of oral L-carnitine display nonlinearity above a dose of 0.5 g 3 times a day.
Collapse
Affiliation(s)
- Marcus A Bain
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
18
|
Shim JE, Baek HH. Determination of trimethylamine in spinach, cabbage, and lettuce at alkaline pH by headspace solid-phase microextraction. J Food Sci 2012; 77:C1071-6. [PMID: 22938177 DOI: 10.1111/j.1750-3841.2012.02897.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED Trimethylamine (TMA) found in some leafy vegetables, such as spinach, cabbage, and lettuce, at alkaline pH was identified and quantified using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME and GC-MS). HS-SPME conditions were optimized at an adsorption temperature of 50 °C, equilibration time of 5 min, and adsorption time of 5 min with 65 μm of polydimethylsiloxane/divinylbenzene fiber. The TMA that was formed from spinach, cabbage, and lettuce was assayed at pH 7 to 11 for 0 to 4 h at 50 °C using HS-SPME. The results showed that the amount of TMA formed was dependent on pH. The amount of TMA formed increased dramatically at a pH greater than 9. TMA was not formed at a pH lower than 7. Spinach produced a higher amount of TMA than cabbage or lettuce. TMA was formed at alkaline pH from choline, betaine, and carnitine, which are TMA precursors. To confirm the SPME results, TMA was quantitated using the AOAC official method. Data obtained from chemical analysis were in good agreement with the SPME data. The formation mechanism of TMA is thought to be the Hofmann elimination reaction, which generates amine compounds at alkaline pH. PRACTICAL APPLICATION Fishy off-flavor in foods is associated with trimethylamine (TMA), which is frequently found in fish and seafood. In this study, TMA was identified for the first time in some leafy vegetables, such as spinach, cabbage, and lettuce, at alkaline pH. The presence of TMA in leafy vegetables under certain circumstances such as high pH and temperature may affect the sensory properties of foods containing these vegetables.
Collapse
Affiliation(s)
- Jae-Ean Shim
- Department of Food Engineering, Dankook University, Dongnam-gu, Cheonan, Korea
| | | |
Collapse
|
19
|
Wang J, Yue H, Xia Z, Wu S, Zhang H, Ji F, Xu L, Qi G. Effect of dietary choline supplementation under different flavin-containing monooxygenase 3 genotypes on trimethylamine metabolism in laying hens. Poult Sci 2012; 91:2221-8. [DOI: 10.3382/ps.2011-02074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Chan ST, Yao MWY, Wong YC, Wong T, Mok CS, Sin DWM. Evaluation of chemical indicators for monitoring freshness of food and determination of volatile amines in fish by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0290-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 2006; 21:1300-4. [PMID: 16401621 DOI: 10.1093/ndt/gfk056] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trimethylamine (TMA) is a short-chain tertiary aliphatic amine that is derived from the diet either directly from the consumption of foods high in TMA or by the intake of food high in precursors to TMA, such as trimethylamine-N-oxide (TMNO), choline and L-carnitine. The clinical significance of TMA may be related to its potential to contribute to neurological toxicity and 'uraemic breath' in patients with end-stage renal disease (ESRD). METHODS Concentrations of TMA and TMNO in plasma from 10 healthy adults (not on haemodialysis) and 10 adults with ESRD undergoing haemodialysis (pre- and post-dialysis) were determined by gas chromatography-mass spectrometry. RESULTS The concentrations of TMA and TMNO in pre-dialysis plasma (1.39+/-0.483 and 99.9+/-31.9 microM, respectively) were significantly (P<0.05) higher than the corresponding levels in healthy subjects (0.418+/-0.124 and 37.8+/-20.4 microM, respectively). However, there were no significant differences between post-dialysis and healthy subject plasma concentrations. In the ESRD patients, there was a significant (P<0.05) reduction in plasma TMA (from 1.39+/-0.483 to 0.484+/-0.164 microM) and TMNO (from 99.9+/-31.9 to 41.3+/-18.8 microM) during a single haemodialysis session. CONCLUSIONS TMA and TMNO accumulate between haemodialysis sessions in ESRD patients, but are efficiently removed during a single haemodialysis session.
Collapse
Affiliation(s)
- Marcus A Bain
- Centre for Pharmaceutical Research, University of South Australia, Adelaide, SA 5000, Australia.
| | | | | | | | | |
Collapse
|