1
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Ray N. Design of a novel Fischer carbene complex which can facilitate thiol mediated site-specific protein immobilization. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
3
|
Wang X, Gao B, Chan BP. Multiphoton microfabrication and micropatterning (MMM) - An all-in-one platform for engineering biomimetic soluble cell niches. Biomaterials 2021; 269:120644. [PMID: 33472153 DOI: 10.1016/j.biomaterials.2020.120644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Engineered biomimetic cell niches represent a valuable in vitro tool for investigating physiological and pathological cellular activities, while developing an all-in-one technology to engineer cell niches, particularly soluble cell niche factors, with retained bioactivities, remains challenging. Here, we report a mask-free, non-contact and biocompatible multiphoton microfabrication and micropatterning (MMM) technology in engineering a spatially and quantitatively controllable bone morphogenetic protein-2 (BMP-2) soluble niche, by immobilizing optimally biotinylated BMP-2 (bBMP-2) on micro-printed neutravidin (NA) micropatterns. Notably, the micropatterned NA bound-bBMP-2 niche elicited a more sustained and a higher level of the downstream Smad signaling than that by free BMP-2, in C2C12 cells, suggesting the advantages of immobilizing soluble niche factors on engineered micropatterns or scaffold materials. This work reports a universal all-in-one cell niche engineering platform and contributes to reconstituting heterogeneous native soluble cell niches for signal transduction modeling and drug screening studies.
Collapse
Affiliation(s)
- Xinna Wang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Barbara P Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Jaiswal N, Hens A, Chatterjee M, Mahata N, Chanda N. Ethylenediamine assisted functionalization of self-organized poly (d, l-lactide-co-glycolide) patterned surface to enhance cancer cell isolation. J Colloid Interface Sci 2019; 534:122-130. [DOI: 10.1016/j.jcis.2018.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
|
5
|
Bilal M, Rasheed T, Zhao Y, Iqbal HMN, Cui J. "Smart" chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 2018; 119:278-290. [PMID: 30041033 DOI: 10.1016/j.ijbiomac.2018.07.134] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In the past few decades, the enzyme immobilization technology has been exploited a lot and thus became a matter of rational design. Immobilization is an alternative approach to bio-catalysis with the added benefits, adaptability to automation and high-throughput applications. Immobilization-based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type or pristine counterparts. From the chemistry viewpoint, the concept of stabilization via manipulation of functional entities, the enzyme surfaces have been an important driving force for immobilizing purposes. In addition, the unique physiochemical and structural functionalities of pristine or engineered cues, or insoluble support matrices (carrier) such as mean particle diameter, swelling behavior, mechanical strength, and compression behavior are of supreme interest and importance for the performance of the immobilized systems. Immobilization of peroxidases into/onto insoluble support matrices is advantageous for practical applications due to convenience in handling, ease separation of enzymes from a reaction mixture and the reusability. A plethora of literature is available explaining individual immobilization system. However, current literature lacks the chemistry viewpoint of immobilization. This review work presents state-of-the-art "Smart" chemistry of immobilization and novel potentialities of several materials-based cues with different geometries including microspheres, hydrogels and polymeric membranes, nanoparticles, nanofibers, composite and hybrid or blended support materials. The involvement of various functional groups including amino, thiol, carboxylic, hydroxyl, and epoxy groups via "click" chemistry, amine chemistry, thiol chemistry, carboxyl chemistry, and epoxy chemistry over the protein surfaces is discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Jiandong Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
6
|
Credi C, De Marco C, Molena E, Pla Roca M, Samitier Martí J, Marques J, Fernàndez-Busquets X, Levi M, Turri S. Heparin micropatterning onto fouling-release perfluoropolyether-based polymers via photobiotin activation. Colloids Surf B Biointerfaces 2016; 146:250-9. [PMID: 27351136 DOI: 10.1016/j.colsurfb.2016.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 01/17/2023]
Abstract
A simple method for constructing versatile ordered biotin/avidin arrays on UV-curable perfluoropolyethers (PFPEs) is presented. The goal is the realization of a versatile platform where any biotinylated biological ligands can be further linked to the underlying biotin/avidin array. To this end, microcontact arrayer and microcontact printing technologies were developed for photobiotin direct printing on PFPEs. As attested by fluorescence images, we demonstrate that this photoactive form of biotin is capable of grafting onto PFPEs surfaces during irradiation. Bioaffinity conjugation of the biotin/avidin system was subsequently exploited for further self-assembly avidin family proteins onto photobiotin arrays. The excellent fouling release PFPEs surface properties enable performing avidin assembly step simply by arrays incubation without PFPEs surface passivation or chemical modification to avoid unspecific biomolecule adsorption. Finally, as a proof of principle biotinylated heparin was successfully grafted onto photobiotin/avidin arrays.
Collapse
Affiliation(s)
- Caterina Credi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Carmela De Marco
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Elena Molena
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mateu Pla Roca
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Josep Samitier Martí
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri-Reixac 10-12, 08028 Barcelona, Spain; The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Maria de Luna, 11, 50018, Zaragoza, Spain; Department of Electronics, University of Barcelona (UB), Martí i Franquès, 1, Barcelona 08028, Spain
| | - Joana Marques
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Marinella Levi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Turri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Choi HJ, Chung BH, Kim Y. Analysis of Protein-Protein Interactions by Surface Plasmon Resonance Imaging-based Microwell and Microfluidic Chip. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyun-Ju Choi
- Institute of General Education; Kyungnam University; Changwon-si Republic of Korea
| | - Bong Hyun Chung
- Department of Science Education; Kyungnam University; Changwon-si Republic of Korea
| | - Yongseong Kim
- BioNanotechnology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon 305-806 Republic of Korea
| |
Collapse
|
8
|
El Muslemany KM, Twite AA, ElSohly AM, Obermeyer AC, Mathies RA, Francis MB. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning. J Am Chem Soc 2014; 136:12600-6. [PMID: 25171554 DOI: 10.1021/ja503056x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.
Collapse
Affiliation(s)
- Kareem M El Muslemany
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | | | | | | | |
Collapse
|
9
|
Custódio CA, San Miguel-Arranz V, Gropeanu RA, Gropeanu M, Wirkner M, Reis RL, Mano JF, del Campo A. Photopatterned antibodies for selective cell attachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10066-10071. [PMID: 25076392 DOI: 10.1021/la502688h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a phototriggerable system that allows for the spatiotemporal controlled attachment of selected cell types to a biomaterial using immobilized antibodies that specifically target individual cell phenotypes. o-Nitrobenzyl caged biotin was used to functionalize chitosan membranes and mediate site-specific coupling of streptavidin and biotinylated antibodies after light activation. The ability of this system to capture and immobilize specific cells on a surface was tested using endothelial-specific biotinylated antibodies and nonspecific ones as controls. Homogeneous patterned monolayers of human umbilical vein endothelial cells were obtained on CD31-functionalized surfaces. This is a simple and generic approach that is applicable to other ligands, materials, and cell types and shows the flexibility of caged ligands to trigger and control the interaction between cells and biomaterials.
Collapse
Affiliation(s)
- C A Custódio
- Max-Planck-Institut für Polymerforschung , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
11
|
Zhu D, Li W, Ma L, Lei Y. Glutathione-functionalized Mn:ZnS/ZnO core/shell quantum dots as potential time-resolved FRET bioprobes. RSC Adv 2014. [DOI: 10.1039/c3ra45491f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Jia F, Narasimhan B, Mallapragada S. Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Biotechnol Bioeng 2013; 111:209-22. [DOI: 10.1002/bit.25136] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/13/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Feng Jia
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| |
Collapse
|
13
|
Yun JM, Ganesan R, Choi JH, Kim JB. Local pH-responsive diazoketo-functionalized photoresist for multicomponent protein patterning. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10253-10259. [PMID: 24053579 DOI: 10.1021/am403053x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Selective surface immobilization of multiple biomolecule components, under mild conditions where they do not denature, is attractive for applications in biosensors and biotechnology. Here, we report on a biocompatible and pH-responsive photoresist containing diazoketo-functionalized methacrylate, methacrylic acid, and poly(ethylene glycol) methacrylate monomers, where the photolithographic process may be carried out in a local pH range to minimize biomolecular denaturation. The polymer is insoluble or sparsely soluble in pH 6.4 or more acidic solution or deionized water, but soluble in a basic solution, pH 7.9 or more. After UV exposure, however, carboxylic acid groups are generated by Wolff rearrangement and photodissociation of the diazoketo groups in the polymer chain, leading to dissolution of UV-exposed polymer at pH 6.4. Using the property of the pH-solubility switching, we demonstrate dual streptavidin patterning using only biological buffers, pH 6.4 and 7.9 solutions, and double exposure patterning to confirm the sustainability of the diazoketo groups in unexposed regions despite carrying out several wet processes.
Collapse
Affiliation(s)
- Je Moon Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
14
|
Gropeanu M, Bhagawati M, Gropeanu RA, Rodríguez Muñiz GM, Sundaram S, Piehler J, del Campo A. A versatile toolbox for multiplexed protein micropatterning by laser lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:838-845. [PMID: 23161760 DOI: 10.1002/smll.201201901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Photocleavable oligohistidine peptides (POHP) allow in situ spatial organization of multiple His-tagged proteins onto surfaces functionalized with tris(nitrilotriacetic acid) (tris-NTA). Here, a second generation of POHPs is presented with improved photoresponse and site-specific covalent coupling is introduced for generating stable protein assemblies. POHPs with different numbers of histidine residues and a photocleavable linker based on the 4,5-dimethoxy-o-nitrophenyl ethyl chromophore are prepared. These peptides show better photosensitivity than the previously used o-nitrophenyl ethyl derivative. Efficient and stable caging of tris-NTA-functionalized surfaces by POHPs comprising 12 histidine residues is demonstrated by multiparameter solid-phase detection techniques. Laser lithographic uncaging by photofragmentation of the POHPs is possible with substantially reduced photodamage as compared to previous approaches. Thus, in situ micropatterning of His-tagged proteins under physiological conditions is demonstrated for the first time. In combination with a short peptide tag for a site-specific enzymatic coupling reaction, covalent immobilization of multiple proteins into target micropatterns is possible under physiological conditions.
Collapse
|
15
|
Mattiuzzi A, Jabin I, Mangeney C, Roux C, Reinaud O, Santos L, Bergamini JF, Hapiot P, Lagrost C. Electrografting of calix[4]arenediazonium salts to form versatile robust platforms for spatially controlled surface functionalization. Nat Commun 2013; 3:1130. [PMID: 23072800 DOI: 10.1038/ncomms2121] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022] Open
Abstract
An essential issue in the development of materials presenting an accurately functionalized surface is to achieve control of layer structuring. Whereas the very popular method based on the spontaneous adsorption of alkanethiols on metal faces stability problems, the reductive electrografting of aryldiazonium salts yielding stable interface, struggles with the control of the formation and organization of monolayers. Here we report a general strategy for patterning surfaces using aryldiazonium surface chemistry. Calix[4]tetra-diazonium cations generated in situ from the corresponding tetra-anilines were electrografted on gold and carbon substrates. The well-preorganized macrocyclic structure of the calix[4]arene molecules allows the formation of densely packed monolayers. Through adequate decoration of the small rim of the calixarenes, functional molecules can then be introduced on the immobilized calixarene subunits, paving the way for an accurate spatial control of the chemical composition of a surface at molecular level.
Collapse
Affiliation(s)
- Alice Mattiuzzi
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (U.L.B.), CP 160/06, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ortega FJ, Bañuls MJ, Sanza FJ, Laguna MF, Holgado M, Casquel R, Barrios CA, López-Romero D, Maquieira Á, Puchades R. Development of a versatile biotinylated material based on SU-8. J Mater Chem B 2013; 1:2750-2756. [DOI: 10.1039/c3tb20323a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Thakur G, Prashanthi K, Thundat T. Directed self-assembly of proteins into discrete radial patterns. Sci Rep 2013; 3:1923. [PMID: 23719678 PMCID: PMC3667488 DOI: 10.1038/srep01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022] Open
Abstract
Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns.
Collapse
Affiliation(s)
- Garima Thakur
- Department of Chemical and Materials Engineering University of Alberta, Edmonton, Canada
- These authors contributed equally to this work
| | - Kovur Prashanthi
- Department of Chemical and Materials Engineering University of Alberta, Edmonton, Canada
- These authors contributed equally to this work
| | - Thomas Thundat
- Department of Chemical and Materials Engineering University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Ahmed I, Fruk L. The power of light: photosensitive tools for chemical biology. ACTA ACUST UNITED AC 2013; 9:565-70. [DOI: 10.1039/c2mb25407g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Cui J, Miguel VS, del Campo A. Light-Triggered Multifunctionality at Surfaces Mediated by Photolabile Protecting Groups. Macromol Rapid Commun 2012; 34:310-29. [DOI: 10.1002/marc.201200634] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/26/2012] [Indexed: 12/31/2022]
|
20
|
Arumugam S, Popik VV. Attach, remove, or replace: reversible surface functionalization using thiol-quinone methide photoclick chemistry. J Am Chem Soc 2012; 134:8408-11. [PMID: 22568774 DOI: 10.1021/ja302970x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A very facile reaction between photochemically generated o-naphthoquinone methides (oNQMs) and thiols is employed for reversible light-directed surface derivatization and patterning. A thiol-functionalized glass slide is covered with an aqueous solution of a substrate conjugated to 3-(hydroxymethyl)-2-naphthol (NQMP). Subsequent irradiation via shadow mask results in the efficient conversion of NQMP into reactive oNQM species in the exposed areas. The latter react with thiol groups on the surface, producing thioether links between the substrate and the surface. Unreacted oNQM groups are rapidly hydrated to regenerate NQMP. The short lifetime of oNQM in aqueous solution prevents its migration from the site of irradiation, thus allowing for the spatial control of the surface derivatization. A two-step procedure was employed for protein patterning: photobiotinylation of the surface with an NQMP-biotin conjugate followed by staining with FITC-avidin. The orthogonality of oNQM-thiol and azide click chemistry allowed for the development of a sequential click strategy, which might be useful for the immobilization of light-sensitive compounds. The thioether linkage produced by the reaction of oNQM and a thiol is stable under ambient conditions but can be cleaved by UV irradiation, regenerating the free thiol. This feature allows for the removal or replacement of immobilized substrates.
Collapse
|
21
|
Arumugam S, Orski SV, Locklin J, Popik VV. Photoreactive polymer brushes for high-density patterned surface derivatization using a Diels-Alder photoclick reaction. J Am Chem Soc 2011; 134:179-82. [PMID: 22191601 DOI: 10.1021/ja210350d] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactive polymer brushes grown on silicon oxide surfaces were derivatized with photoreactive 3-(hydroxymethyl)naphthalene-2-ol (NQMP) moieties. Upon 300 or 350 nm irradiation, NQMP efficiently produces o-naphthoquinone methide (oNQM), which in turn undergoes very rapid Diels-Alder addition to vinyl ether groups attached to a substrate, resulting in the covalent immobilization of the latter. Any unreacted oNQM groups rapidly add water to regenerate NQMP. High-resolution surface patterning is achieved by irradiating NQMP-derivatized surfaces using photolithographic methods. The Diels-Alder photoclick reaction is orthogonal to azide-alkyne click chemistry, enabling sequential photoclick/azide-click derivatizations to generate complex surface functionalities.
Collapse
Affiliation(s)
- Selvanathan Arumugam
- Department of Chemistry and the Center for Nanoscale Science and Engineering, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
22
|
Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X. Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew Chem Int Ed Engl 2011; 50:6306-10. [PMID: 21612007 DOI: 10.1002/anie.201100303] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/28/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Datao Tu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Attavar S, Diwekar M, Blair S. Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet. LAB ON A CHIP 2011; 11:841-844. [PMID: 21270999 DOI: 10.1039/c0lc00498g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a photoactivated surface coupling scheme for achieving spatial overlap between biomolecules of interest and optical near field excitation. Using aluminium nanoapertures, we obtained increased coupling efficiency of biotinylated capture probe oligos to the photoactivated surface due to ~3× nanoaperture enhancement of UV light. We further validate DNA sensor functionality via the hybridization of Cy-5 labeled target oligos, with up to 8× fluorescence enhancement obtained from a commercial microarray scanner. This generic photoimmobilization strategy is an essential step to realizing miniaturized plasmon enhanced detection arrays by virtue of localizing capture molecules to the region of plasmonic enhancement.
Collapse
Affiliation(s)
- Sachin Attavar
- Department of Electrical and Computer Engineering, University of Utah, 50 South Central campus Drive, Room 3280, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
25
|
Abstract
The application of nanotechnology has opened a new realm of advancement in the field of regenerative medicine and has provided hope for the culmination of long-felt needs by the development of an ideal means to control the biochemical and mechanical microenvironment for successful cell delivery and tissue regeneration. Both top-down and bottom-up approaches have been widely used in the advancement of this field, be it by improvement in scaffolds for cell growth, development of new and efficient delivery devices, cellular modification and tracking applications or by development of nanodevices such as biosensors. The current review elaborates the various nanomaterials used in regenerative medicine with a special focus on the development of this field during the last 5 years and the recent advances in their aforementioned applications. Furthermore, the key issues and challenges in using nanotechnology-based approaches are highlighted with an outlook on the likely future of nano-assisted regenerative medicine.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, SAS Nagar (Mohali) 160062, Punjab, India
| | - Abraham J Domb
- Department of Medicinal Chemistry, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Neeraj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, SAS Nagar (Mohali) 160062, Punjab, India
| |
Collapse
|
26
|
Bhagawati M, Lata S, Tampé R, Piehler J. Native laser lithography of His-tagged proteins by uncaging of multivalent chelators. J Am Chem Soc 2010; 132:5932-3. [PMID: 20387883 DOI: 10.1021/ja1000714] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a generic approach for targeting proteins into micropatterns by in situ laser lithography. To this end, we have designed a photocleavable oligohistidine peptide for caging tris(nitrilo triacetic acid) (tris-NTA) groups on surfaces by multivalent interactions. Local photofragmentation of the peptide by UV illumination through a photomask or by a confocal laser beam uncages tris-NTA, thus generating free binding sites for rapid, site-specific capturing of His-tagged proteins into micropatterns. Iterative writing of proteins by laser lithography enabled for assembly of multiplexed functional protein microstructures on surfaces. Thus, versatile, user-defined protein micropatterns can be assembled under physiological conditions with a standard confocal laser-scanning microscope.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
27
|
Flavel BS, Gross AJ, Garrett DJ, Nock V, Downard AJ. A simple approach to patterned protein immobilization on silicon via electrografting from diazonium salt solutions. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1184-1190. [PMID: 20423137 DOI: 10.1021/am100020a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A highly versatile method utilizing diazonium salt chemistry has been developed for the fabrication of protein arrays. Conventional ultraviolet mask lithography was used to pattern micrometer sized regions into a commercial photoresist on a highly doped p-type silicon (100) substrate. These patterned regions were used as a template for the electrochemical grafting of the in situ generated p-aminobenzenediazonium cation to form patterns of aminophenyl film on silicon. Immobilization of biomolecules was demonstrated by coupling biotin to the aminophenyl regions followed by reaction with fluorescently labeled avidin and visualization with fluorescence microscopy. This simple patterning strategy is promising for future application in biosensor devices.
Collapse
Affiliation(s)
- Benjamin S Flavel
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Lin PC, Weinrich D, Waldmann H. Protein Biochips: Oriented Surface Immobilization of Proteins. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900539] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Dubey M, Emoto K, Cheng F, Gamble LJ, Takahashi H, Grainger DW, Castner DG. Surface Analysis of Photolithographic Patterns using ToF-SIMS and PCA. SURF INTERFACE ANAL 2009; 41:645-652. [PMID: 19756241 DOI: 10.1002/sia.3056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a surface analysis technique well-suited to detect and identify trace surface species. With the latest analyzers, ion sources and data analysis methods, imaging ToF-SIMS provides detailed 2-D and 3-D surface reactivity maps. Coupling multivariate analysis methods such as principal component analysis (PCA) with ToF-SIMS provides a powerful method for differentiating spatial regions with different chemistries. ToF-SIMS and PCA are used in this study to image and analyze a two-component photolithograph-patterned surface chemistry currently published and commercialized for bioassays, bio-chips and cell-based biosensors. A widely used reactive surface coupling chemistry, N-hydroxysuccinimide (NHS), and 2-methoxyethylamine (MeO) were co-patterned into adjacent regions on a commercial microarray polymer coating using standard photolithography methods involving deposition, patterning and removal of a routinely used photoresist material. After routine processing, ToF-SIMS and PCA of the patterned surface revealed significant residual photoresist material remaining at the interface of the NHS/MeO patterns, as well as lower concentrations of residual photoresist material remaining within the MeO-containing regions, providing spatial mapping and residue analysis not evident from other characterization techniques. As detection of surface photoresist residue remains an inherent challenge in photolithographic processing of a wide array of materials, the use of ToF-SIMS coupled with PCA is shown to be a high-resolution characterization tool with the high sensitivity and specificity required for surface quality control measurements following photolithography and pattern development relevant to many current processes.
Collapse
Affiliation(s)
- Manish Dubey
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351750, University of Washington, Seattle, WA 98195-1750 USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl 2008; 47:9618-47. [PMID: 19025742 DOI: 10.1002/anie.200801711] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein biochips are at the heart of many medical and bioanalytical applications. Increasing interest has been focused on surface activation and subsequent functionalization strategies for immobilizing these biomolecules. Different approaches using covalent and noncovalent chemistry are reviewed; particular emphasis is placed on the chemical specificity of protein attachment and on retention of protein function. Strategies for creating protein patterns (as opposed to protein arrays) are also outlined. An outlook on promising and challenging future directions for protein biochip research and applications is also offered.
Collapse
Affiliation(s)
- Pascal Jonkheijm
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology and Faculty of Chemistry, Chemical Biology, Technical University of Dortmund, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
31
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer C, Waldmann H. Chemische Verfahren zur Herstellung von Proteinbiochips. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Dinca V, Kasotakis E, Mourka A, Ranella A, Farsari M, Mitraki A, Fotakis C. Fabrication of amyloid peptide micro-arrays using laser-induced forward transfer and avidin-biotin mediated assembly. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pssc.200780187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Strategies for label-free optical detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 109:395-432. [PMID: 17999039 DOI: 10.1007/10_2007_076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large number of methods using direct detection with label-free systems are known. They compete with the well-introduced fluorescence-based methods. However, recent applications take advantage of label-free detection in protein-protein interactions, high-throughput screening, and high-content screening. These new applications require new strategies for biosensors. It becomes more and more obvious that neither the transduction principle nor the recognition elements for the biomolecular interaction process alone determine the quality of the biosensor. Accordingly, the biosensor system has to be considered as a whole. This chapter focuses on strategies to optimize the detection platform and the biomolecular recognition layer. It concentrates on direct detection methods, with special focus on optical transduction. Since even this restriction still leaves a large number of methods, only microrefractometric and microreflectometric methods using planar transducers have been selected for a detailed description and a listing of applications. However, since many review articles on the physical principles exist, the description is kept short. Other methods are just mentioned in brief and for comparison. The outlook and the applications demonstrate the future perspectives of direct optical detection in bioanalytics.
Collapse
|
34
|
Cheng F, Gamble LJ, Grainger DW, Castner DG. X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and principal component analysis of the hydrolysis, regeneration, and reactivity of N-hydroxysuccinimide-containing organic thin films. Anal Chem 2007; 79:8781-8. [PMID: 17929879 DOI: 10.1021/ac0715423] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Hydroxysuccinimide (NHS) esters are widely used as leaving groups to activate covalent coupling of amine-containing biomolecules onto surfaces in academic and commercial surface immobilizations. Their intrinsic hydrolytic instability is well-known and remains a concern for maintaining stable, reactive surface chemistry, especially for reliable longer term storage. In this work, we use X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate surface hydrolysis in NHS-bearing organic thin films. Principal component analysis (PCA) of both positive and negative ion TOF-SIMS data was used to correlate changes in the well-defined NHS ester oligo(ethylene glycol) (NHS-OEG) self-assembled monolayers to their surface treatment. From PCA results, multivariate peak intensity ratios were developed for monitoring NHS reactivity, thin-film thickness, and oxidation of the monolayers during surface hydrolysis. Aging in ambient air for up to 7 days resulted in hydrolysis of some fraction of bound NHS groups, oxidation of some resident thiol groups, and deposition of adventitious hydrocarbon contaminants onto the monolayers. Overnight film immersion under water produced complete hydrolysis and removal of the NHS chemistry, as well as removal of some of the thiolated OEG chains. NHS regeneration of the hydrolyzed surfaces was assessed using the same multivariable peak intensity ratio as well as surface coupling with amine-terminated molecules. Both aqueous and organic NHS regeneration methods produced surfaces with bound NHS concentrations approximately 50% of the bound NHS concentration on freshly prepared NHS-OEG monolayers. Precise methods for quantifying NHS chemistry on surfaces are useful for quality control processes required in surface technologies that rely on reliable and reproducible reactive ester coupling. These applications include microarray, microfluidic, immunoassay, bioreactor, tissue engineer-ing, and biomedical device fabrication.
Collapse
Affiliation(s)
- Fang Cheng
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, Washington 98195-1750, USA
| | | | | | | |
Collapse
|
35
|
Fink J, Théry M, Azioune A, Dupont R, Chatelain F, Bornens M, Piel M. Comparative study and improvement of current cell micro-patterning techniques. LAB ON A CHIP 2007; 7:672-80. [PMID: 17538708 DOI: 10.1039/b618545b] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The original micropatterning technique on gold, although very efficient, is not accessible to most biology labs and is not compatible with their techniques for image acquisition. Other solutions have been developed on silanized glass coverslips. These methods are still hardly accessible to biology labs and do not provide sufficient reproducibility to become incorporated in routine biological protocols. Here, we analyzed cell behavior on micro-patterns produced by various alternative techniques. Distinct cell types displayed different behavior on micropatterns, while some were easily constrained by the patterns others escaped or ripped off the patterned adhesion molecules. We report methods to overcome some of these limitations on glass coverslips and on plastic dishes which are compatible with our experimental biological applications. Finally, we present a new method based on UV crosslinking of adhesion proteins with benzophenone to easily and rapidly produce highly reproducible micropatterns without the use of a microfabricated elastomeric stamp.
Collapse
Affiliation(s)
- Jenny Fink
- Biologie du cycle cellulaire et de la motilité, Institut Curie, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|