1
|
Wooddell CI, Sanders D, Xu Z, Mak LY, Schluep T, Seto WK, Given BD, Yuen MF. Characterization of Hepatitis B Virus Transcripts in Chronically HBV-Infected Chimpanzees and Patients Treated with ARC-520 siRNA Demonstrates Transcriptional Silencing of cccDNA. Viruses 2024; 16:1943. [PMID: 39772249 PMCID: PMC11680220 DOI: 10.3390/v16121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.4 copies/cell cccDNA (two to three orders of magnitude more cccDNA than HBeAg- chimpanzees) but expressed primarily truncated X and HBsAg from iDNA, like two patients that were HBeAg- at the start of the study and had one copy/cell cccDNA. No HBV transcripts were detected in two other HBeAg- patients that had ~0.3 copies/cell cccDNA, one of which had seroconverted for HBsAg. The paucity of cccDNA-derived transcripts in the presence of high cccDNA demonstrates the transcriptional silencing of HBV following MD siRNA treatment with ETV.
Collapse
Affiliation(s)
| | - Dean Sanders
- Arrowhead Pharmaceuticals Inc., 502 S. Rosa Road, Madison, WI 53719, USA;
| | - Zhao Xu
- Arrowhead Pharmaceuticals Inc., 10102 Hoyt Park Drive, San Diego, CA 92131, USA;
| | - Lung-Yi Mak
- Department of Medicine & State Key Laboratory of Liver Research, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China; (L.-Y.M.); (W.-K.S.); (M.-F.Y.)
| | - Thomas Schluep
- Arrowhead Pharmaceuticals Inc., 177 E. Colorado Boulevard, Suite 700, Pasadena, CA 91105, USA; (T.S.); (B.D.G.)
| | - Wai-Kay Seto
- Department of Medicine & State Key Laboratory of Liver Research, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China; (L.-Y.M.); (W.-K.S.); (M.-F.Y.)
| | - Bruce D. Given
- Arrowhead Pharmaceuticals Inc., 177 E. Colorado Boulevard, Suite 700, Pasadena, CA 91105, USA; (T.S.); (B.D.G.)
| | - Man-Fung Yuen
- Department of Medicine & State Key Laboratory of Liver Research, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China; (L.-Y.M.); (W.-K.S.); (M.-F.Y.)
| |
Collapse
|
2
|
Efstratiou A, Gaigher A, Künzel S, Teles A, Lenz TL. Template-specific optimization of NGS genotyping pipelines reveals allele-specific variation in MHC gene expression. Mol Ecol Resour 2024; 24:e13935. [PMID: 38332480 DOI: 10.1111/1755-0998.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Using high-throughput sequencing for precise genotyping of multi-locus gene families, such as the major histocompatibility complex (MHC), remains challenging, due to the complexity of the data and difficulties in distinguishing genuine from erroneous variants. Several dedicated genotyping pipelines for data from high-throughput sequencing, such as next-generation sequencing (NGS), have been developed to tackle the ensuing risk of artificially inflated diversity. Here, we thoroughly assess three such multi-locus genotyping pipelines for NGS data, the DOC method, AmpliSAS and ACACIA, using MHC class IIβ data sets of three-spined stickleback gDNA, cDNA and "artificial" plasmid samples with known allelic diversity. We show that genotyping of gDNA and plasmid samples at optimal pipeline parameters was highly accurate and reproducible across methods. However, for cDNA data, the gDNA-optimal parameter configuration yielded decreased overall genotyping precision and consistency between pipelines. Further adjustments of key clustering parameters were required tο account for higher error rates and larger variation in sequencing depth per allele, highlighting the importance of template-specific pipeline optimization for reliable genotyping of multi-locus gene families. Through accurate paired gDNA-cDNA typing and MHC-II haplotype inference, we show that MHC-II allele-specific expression levels correlate negatively with allele number across haplotypes. Lastly, sibship-assisted cDNA-typing of MHC-I revealed novel variants linked in haplotype blocks, and a higher-than-previously-reported individual MHC-I allelic diversity. In conclusion, we provide novel genotyping protocols for the three-spined stickleback MHC-I and -II genes, and evaluate the performance of popular NGS-genotyping pipelines. We also show that fine-tuned genotyping of paired gDNA-cDNA samples facilitates amplification bias-corrected MHC allele expression analysis.
Collapse
Affiliation(s)
- Artemis Efstratiou
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Arnaud Gaigher
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ana Teles
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
Deneault E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr Issues Mol Biol 2024; 46:4147-4185. [PMID: 38785523 PMCID: PMC11119904 DOI: 10.3390/cimb46050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
Collapse
Affiliation(s)
- Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
4
|
Westfall DH, Deng W, Pankow A, Murrell H, Chen L, Zhao H, Williamson C, Rolland M, Murrell B, Mullins JI. Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations-Application to HIV-1 quasispecies. Virus Evol 2024; 10:veae019. [PMID: 38765465 PMCID: PMC11099545 DOI: 10.1093/ve/veae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 05/22/2024] Open
Abstract
Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing, which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence polymerase-chain reaction (PCR) amplicons derived from cDNA templates tagged with unique molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR. The use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Production of highly accurate sequences from the large datasets produced from SMRT-UMI sequencing is facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline). PORPIDpipeline automatically filters and parses circular consensus reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination, heteroduplex formation, or early cycle PCR errors. The optimized SMRT-UMI sequencing and PORPIDpipeline methods presented here represent a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus quasispecies in a virus transmitter-recipient pair of individuals.
Collapse
Affiliation(s)
- Dylan H Westfall
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
| | - Alec Pankow
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
| | - Hugh Murrell
- Department of Pathology, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Observatory, Cape Town 7925, South Africa
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
| | - Carolyn Williamson
- Department of Pathology, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Observatory, Cape Town 7925, South Africa
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden
| | - James I Mullins
- Department of Microbiology, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
- Department of Medicine, University of Washington School of Medicine, 960 Republican Street, Seattle, WA 98195-8070, USA
- Department of Global Health, University of Washington Schools of Medicine and Public Health, 960 Republican Street, Seattle, WA 98195-8070, USA
| |
Collapse
|
5
|
Scott S, Dillon R, Thiede C, Sadiq S, Cartwright A, Clouston HJ, Travis D, Mokretar K, Potter N, Chantry A, Whitby L. Assessment of acute myeloid leukemia molecular measurable residual disease testing in an interlaboratory study. Blood Adv 2023; 7:3686-3694. [PMID: 36939402 PMCID: PMC10368676 DOI: 10.1182/bloodadvances.2022009379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
The European LeukaemiaNet (ELN) measurable residual disease (MRD) working group has published consensus guidelines to standardize molecular genetic MRD testing of the t(8;21)(q22;q22.1) RUNX1::RUNX1T1, inv(16)(p13.1q22) CBFB::MYH11, t(15;17)(q24.1;q21.2) PML::RARA, and NPM1 type A markers. A study featuring 29 international laboratories was performed to assess interlaboratory variation in testing and the subsequent interpretation of results, both crucial to patient safety. Most participants in this study were able to detect, accurately quantify, and correctly interpret MRD testing results, with a level of proficiency expected from a clinical trial or standard-of-care setting. However, a few testing and interpretive errors were identified that, in a patient setting, would have led to misclassification of patient outcomes and inappropriate treatment pathways being followed. Of note, a high proportion of participants reported false-positive results in the NPM1 marker-negative sample. False-positive results may have clinical consequences, committing patients to unneeded additional chemotherapy and/or transplant with the attendant risk of morbidity and mortality, which therefore highlights the need for ongoing external quality assessment/proficiency testing in this area. Most errors identified in the study were related to the interpretation of results. It was noted that the ELN guidance lacks clarity for certain clinical scenarios and highlights the requirement for urgent revision of the guidelines to elucidate these issues and related educational efforts around the revisions to ensure effective dissemination.
Collapse
Affiliation(s)
- Stuart Scott
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Richard Dillon
- Department of Haematology, Guy’s International Centre of Excellence in Myeloid Disorders, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
- Department of Medical & Molecular Genetics, King’s College, London, United Kingdom
| | - Christian Thiede
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- AgenDix, Applied Molecular Diagnostics GmbH, Dresden, Germany
| | - Sadia Sadiq
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Ashley Cartwright
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Hazel J. Clouston
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Debbie Travis
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Katya Mokretar
- Cancer genetics, Guy’s Hospital, South East Genomics Laboratory Hub, Synnovis, London, United Kingdom
| | - Nicola Potter
- Department of Medical & Molecular Genetics, King’s College, London, United Kingdom
| | - Andrew Chantry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Liam Whitby
- Laboratory Medicine, UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
6
|
Wojtowicz EE, Mistry JJ, Uzun V, Hellmich C, Scoones A, Chin DW, Kettyle LM, Grasso F, Lord AM, Wright DJ, Etherington GJ, Woll PS, Belderbos ME, Bowles KM, Nerlov C, Haerty W, Bystrykh LV, Jacobsen SEW, Rushworth SA, Macaulay IC. Panhematopoietic RNA barcoding enables kinetic measurements of nucleate and anucleate lineages and the activation of myeloid clones following acute platelet depletion. Genome Biol 2023; 24:152. [PMID: 37370129 PMCID: PMC10294477 DOI: 10.1186/s13059-023-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Jayna J Mistry
- Earlham Institute, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Vladimir Uzun
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Anita Scoones
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Desmond W Chin
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura M Kettyle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Grasso
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Allegra M Lord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Petter S Woll
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Leonid V Bystrykh
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sten Eirik W Jacobsen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | - Iain C Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
7
|
Westfall DH, Deng W, Pankow A, Murrell H, Chen L, Zhao H, Williamson C, Rolland M, Murrell B, Mullins JI. Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations - application to HIV-1 quasispecies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529831. [PMID: 36865215 PMCID: PMC9980183 DOI: 10.1101/2023.02.23.529831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies.
Collapse
Affiliation(s)
- Dylan H. Westfall
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
| | - Wenjie Deng
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
| | - Alec Pankow
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hugh Murrell
- Division of Medical Virology, Department of Pathology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Lennie Chen
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
| | - Hong Zhao
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17717 Stockholm, SE
| | - James I. Mullins
- Department of Microbiology, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
- Department of Medicine, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
- Department of Global Health, University of Washington Schools of Medicine and Public Health, Seattle, WA 98195-8070 US
| |
Collapse
|
8
|
Rosado-Porto D, Ratering S, Wohlfahrt Y, Schneider B, Glatt A, Schnell S. Elevated atmospheric CO 2 concentrations caused a shift of the metabolically active microbiome in vineyard soil. BMC Microbiol 2023; 23:46. [PMID: 36809988 PMCID: PMC9942357 DOI: 10.1186/s12866-023-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Elevated carbon dioxide concentrations (eCO2), one of the main causes of climate change, have several consequences for both vine and cover crops in vineyards and potentially also for the soil microbiome. Hence soil samples were taken from a vineyard free-air CO2 enrichment (VineyardFACE) study in Geisenheim and examined for possible changes in the soil active bacterial composition (cDNA of 16S rRNA) using a metabarcoding approach. Soil samples were taken from the areas between the rows of vines with and without cover cropping from plots exposed to either eCO2 or ambient CO2 (aCO2). RESULTS Diversity indices and redundancy analysis (RDA) demonstrated that eCO2 changed the active soil bacterial diversity in grapevine soil with cover crops (p-value 0.007). In contrast, the bacterial composition in bare soil was unaffected. In addition, the microbial soil respiration (p-values 0.04-0.003) and the ammonium concentration (p-value 0.003) were significantly different in the samples where cover crops were present and exposed to eCO2. Moreover, under eCO2 conditions, qPCR results showed a significant decrease in 16S rRNA copy numbers and transcripts for enzymes involved in N2 fixation and NO2- reduction were observed using qPCR. Co-occurrence analysis revealed a shift in the number, strength, and patterns of microbial interactions under eCO2 conditions, mainly represented by a reduction in the number of interacting ASVs and the number of interactions. CONCLUSIONS The results of this study demonstrate that eCO2 concentrations changed the active soil bacterial composition, which could have future influence on both soil properties and wine quality.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, 080002, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Yvette Wohlfahrt
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366, Geisenheim, Germany
| | - Bellinda Schneider
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Andrea Glatt
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Rosado-Porto D, Ratering S, Cardinale M, Maisinger C, Moser G, Deppe M, Müller C, Schnell S. Elevated Atmospheric CO 2 Modifies Mostly the Metabolic Active Rhizosphere Soil Microbiome in the Giessen FACE Experiment. MICROBIAL ECOLOGY 2022; 83:619-634. [PMID: 34148108 PMCID: PMC8979872 DOI: 10.1007/s00248-021-01791-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Elevated levels of atmospheric CO2 lead to the increase of plant photosynthetic rates, carbon inputs into soil and root exudation. In this work, the effects of rising atmospheric CO2 levels on the metabolic active soil microbiome have been investigated at the Giessen free-air CO2 enrichment (Gi-FACE) experiment on a permanent grassland site near Giessen, Germany. The aim was to assess the effects of increased C supply into the soil, due to elevated CO2, on the active soil microbiome composition. RNA extraction and 16S rRNA (cDNA) metabarcoding sequencing were performed from bulk and rhizosphere soils, and the obtained data were processed for a compositional data analysis calculating diversity indices and differential abundance analyses. The structure of the metabolic active microbiome in the rhizospheric soil showed a clear separation between elevated and ambient CO2 (p = 0.002); increased atmospheric CO2 concentration exerted a significant influence on the microbiomes differentiation (p = 0.01). In contrast, elevated CO2 had no major influence on the structure of the bulk soil microbiome (p = 0.097). Differential abundance results demonstrated that 42 bacterial genera were stimulated under elevated CO2. The RNA-based metabarcoding approach used in this research showed that the ongoing atmospheric CO2 increase of climate change will significantly shift the microbiome structure in the rhizosphere.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni, 73100, Lecce, Italy
| | - Corinna Maisinger
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany.
| |
Collapse
|
10
|
Malinova I, Zupok A, Massouh A, Schöttler MA, Meyer EH, Yaneva-Roder L, Szymanski W, Rößner M, Ruf S, Bock R, Greiner S. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco. THE PLANT CELL 2021; 33:1682-1705. [PMID: 33561268 PMCID: PMC8254509 DOI: 10.1093/plcell/koab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/02/2021] [Indexed: 05/10/2023]
Abstract
Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch [11A] of the atpB coding region (encoding the β-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, nonfunctional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, we generated transplastomic tobacco lines in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We observed that insertion of two adenines was more efficiently corrected than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding, as an additional replacement of AAA lysine codon by AAG resulted in an albino phenotype. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in the presence of a mutation that otherwise would be lethal.
Collapse
Affiliation(s)
- Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Arkadiusz Zupok
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Amid Massouh
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Witold Szymanski
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Margit Rößner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
11
|
Ko SH, Bayat Mokhtari E, Mudvari P, Stein S, Stringham CD, Wagner D, Ramelli S, Ramos-Benitez MJ, Strich JR, Davey RT, Zhou T, Misasi J, Kwong PD, Chertow DS, Sullivan NJ, Boritz EA. High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLoS Pathog 2021; 17:e1009431. [PMID: 33831133 PMCID: PMC8031304 DOI: 10.1371/journal.ppat.1009431] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elham Bayat Mokhtari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher D. Stringham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
| | - Marcos J. Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey R. Strich
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
| | - Richard T. Davey
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Johansson G, Kaltak M, Rîmniceanu C, Singh AK, Lycke J, Malmeström C, Hühn M, Vaarala O, Cardell S, Ståhlberg A. Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular Identifiers. Clin Chem 2021; 66:1228-1237. [PMID: 32814950 DOI: 10.1093/clinchem/hvaa159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune repertoire sequencing of the T-cell receptor can identify clonotypes that have expanded as a result of antigen recognition or hematological malignancies. However, current sequencing protocols display limitations with nonuniform amplification and polymerase-induced errors during sequencing. Here, we developed a sequencing method that overcame these issues and applied it to γδ T cells, a cell type that plays a unique role in immunity, autoimmunity, homeostasis of intestine, skin, adipose tissue, and cancer biology. METHODS The ultrasensitive immune repertoire sequencing method used PCR-introduced unique molecular identifiers. We constructed a 32-panel assay that captured the full diversity of the recombined T-cell receptor delta loci in γδ T cells. The protocol was validated on synthetic reference molecules and blood samples of healthy individuals. RESULTS The 32-panel assay displayed wide dynamic range, high reproducibility, and analytical sensitivity with single-nucleotide resolution. The method corrected for sequencing-depended quantification bias and polymerase-induced errors and could be applied to both enriched and nonenriched cells. Healthy donors displayed oligoclonal expansion of γδ T cells and similar frequencies of clonotypes were detected in both enrichment and nonenriched samples. CONCLUSIONS Ultrasensitive immune repertoire sequencing strategy enables quantification of individual and specific clonotypes in a background that can be applied to clinical as well as basic application areas. Our approach is simple, flexible, and can easily be implemented in any molecular laboratory.
Collapse
Affiliation(s)
- Gustav Johansson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Melita Kaltak
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cristiana Rîmniceanu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Avadhesh K Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Outi Vaarala
- Respiratory Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Takahashi M, Tehseen M, Salunke R, Takahashi E, Mfarrej S, Sobhy MA, Alhamlan FS, Hala S, Ramos-Mandujano G, Al-Qahtani AA, Alofi FS, Alsomali A, Hashem AM, Khogeer A, Almontashiri NAM, Lee JM, Mon H, Sakashita K, Li M, Kusakabe T, Pain A, Hamdan SM. Quick and Easy Assembly of a One-Step qRT-PCR Kit for COVID-19 Diagnostics Using In-House Enzymes. ACS OMEGA 2021; 6:7374-7386. [PMID: 33778250 PMCID: PMC7986002 DOI: 10.1021/acsomega.0c05635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.
Collapse
Affiliation(s)
- Masateru Takahashi
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rahul Salunke
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Etsuko Takahashi
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed A. Sobhy
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fatimah S. Alhamlan
- Department
of Infection and Immunity, King Faisal Specialist
Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sharif Hala
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- King
Saud Bin Abdulaziz University of Health Sciences, Jeddah 22384, Saudi Arabia
- King
Abdullah International Medical Research Centre, Jeddah, Makkah, Ministry of National Guard Health Affairs, Jeddah, Makkah 22384, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Stem
Cell
and Regenration Laboratory. Biological and Environmental Sciences
and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department
of Infection and Immunity, King Faisal Specialist
Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fadwa S. Alofi
- Infectious
Diseases Department, King Fahad Hospital, Madinah 3177, Saudi Arabia
| | - Afrah Alsomali
- King
Abdullah Medical Complex (KAMC), Jeddah 23816, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines
and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department
of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate
of Health Affairs Makkah Region, MOH Mecca 24321, Saudi Arabia
| | - Naif A. M. Almontashiri
- College of Applied Medical Sciences, Taibah
University, Madinah 41311, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Sakashita
- Department of Infection and Immunity, King Faisal Specialist
Hospital
and Research Centre, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mo Li
- Stem
Cell
and Regenration Laboratory. Biological and Environmental Sciences
and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Arnab Pain
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samir M. Hamdan
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Probabilistic models of biological enzymatic polymerization. PLoS One 2021; 16:e0244858. [PMID: 33406128 PMCID: PMC7787436 DOI: 10.1371/journal.pone.0244858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, hierarchies of probabilistic models are evaluated for their ability to characterize the untemplated addition of adenine and uracil to the 3' ends of mitochondrial mRNAs of the human pathogen Trypanosoma brucei, and for their generative abilities to reproduce populations of these untemplated adenine/uridine "tails". We determined the most ideal Hidden Markov Models (HMMs) for this biological system. While our HMMs were not able to generatively reproduce the length distribution of the tails, they fared better in reproducing nucleotide composition aspects of the tail populations. The HMMs robustly identified distinct states of nucleotide addition that correlate to experimentally verified tail nucleotide composition differences. However they also identified a surprising subclass of tails among the ND1 gene transcript populations that is unexpected given the current idea of sequential enzymatic action of untemplated tail addition in this system. Therefore, these models can not only be utilized to reflect biological states that we already know about, they can also identify hypotheses to be experimentally tested. Finally, our HMMs supplied a way to correct a portion of the sequencing errors present in our data. Importantly, these models constitute rare simple pedagogical examples of applied bioinformatic HMMs, due to their binary emissions.
Collapse
|
15
|
Anagnostou M, Chung C, McGann E, Verheijen B, Kou Y, Chen L, Vermulst M. Transcription errors in aging and disease. TRANSLATIONAL MEDICINE OF AGING 2021. [DOI: 10.1016/j.tma.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Wu J, Bisaro DM. Biased Pol II fidelity contributes to conservation of functional domains in the Potato spindle tuber viroid genome. PLoS Pathog 2020; 16:e1009144. [PMID: 33351860 PMCID: PMC7787683 DOI: 10.1371/journal.ppat.1009144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate calculation of mutation rates for viruses and viroids is necessary for evolutionary studies and to evaluate adaptation potential. However, estimation of in vivo mutation rates is complicated by selection, which leads to loss or proliferation of certain mutations. To minimize this concern, lethal mutations, including nonsense and non-synonymous mutations, have been used to determine mutation rates for several viruses and viroids, including Potato spindle tuber viroid (PSTVd). However, this approach has limitations, including focus on a relatively small number of genome sites and the possibility that mutations may not actually be lethal or may be maintained by wild type individuals. To avoid selection bias altogether, we sequenced minus-strand PSTVd dimers from concatemeric replication intermediates. The underlying rationale is that mutations found in only one of the monomers were likely generated de novo during RNA polymerase II (Pol II) transcription of the circular plus-strand RNA genome. This approach yielded an apparent Pol II error rate of ~1/1837 nucleotides per transcription cycle, and an estimated mutation rate of ~1/919 nucleotides for a single replication cycle. Remarkably, de novo mutations were nearly absent from the most conserved, replication-critical regions of the PSTVd genome, suggesting that sequence conservation is a consequence of both essential function and template optimization for greater Pol II fidelity. Such biased fidelity may constitute a novel strategy to ensure population success while allowing abundant sampling of sequence space in other genome regions. Comparison with variants in progeny populations derived from a cloned, wild type PSTVd master sequence revealed that most de novo mutations were lost through selection. Polymerase errors are the major source of variation in virus and viroid genomes, and as a consequence polymerase error rates are major determinants of adaptation potential. Accurate calculation of in vivo mutation rates is complicated by selection. To circumvent this issue, dimeric PSTVd minus-strand replication intermediates generated in vivo by host RNA polymerase II (Pol II) were sequenced to identify de novo mutations. This analysis revealed a very high error rate for Pol II transcribing genomic PSTVd RNA, leading to an extremely high mutation rate. Remarkably, however, de novo mutations were rare in the most highly conserved, replication-critical genome regions, suggesting these sequences are selected for both function and enhanced transcription fidelity. This biased fidelity may reveal a novel strategy to ensure population survival while maximizing adaptation potential. Further, comparison of mutations identified by minus-strand dimer sequencing with mutations observed in progeny variants derived from wild type PSTVd showed that most de novo mutations were lost through selection.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
18
|
Oikonomopoulos S, Bayega A, Fahiminiya S, Djambazian H, Berube P, Ragoussis J. Methodologies for Transcript Profiling Using Long-Read Technologies. Front Genet 2020; 11:606. [PMID: 32733532 PMCID: PMC7358353 DOI: 10.3389/fgene.2020.00606] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.
Collapse
Affiliation(s)
- Spyros Oikonomopoulos
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Anthony Bayega
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Somayyeh Fahiminiya
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Haig Djambazian
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Pierre Berube
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
Romzova M, Smitalova D, Tom N, Jurcek T, Culen M, Zackova D, Mayer J, Racil Z. Novel Illumina‐based next generation sequencing approach with one‐round amplification provides early and reliable detection of BCR‐ABL1 kinase domain mutations in chronic myeloid leukemia. Br J Haematol 2020; 189:469-474. [DOI: 10.1111/bjh.16382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marianna Romzova
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
- Department of Biochemistry Faculty of Medicine Masaryk University Brno Czech Republic
| | - Dagmar Smitalova
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
- Department of Internal medicine, Hematology and Oncology Faculty of Medicine Masaryk University Brno Czech Republic
| | - Nikola Tom
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
| | - Tomas Jurcek
- Department of Internal medicine, Hematology and Oncology Faculty of Medicine Masaryk University Brno Czech Republic
- Internal Hematology and Oncology Clinic University Hospital Brno Brno Czech Republic
| | - Martin Culen
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
- Department of Internal medicine, Hematology and Oncology Faculty of Medicine Masaryk University Brno Czech Republic
- Internal Hematology and Oncology Clinic University Hospital Brno Brno Czech Republic
| | - Daniela Zackova
- Internal Hematology and Oncology Clinic University Hospital Brno Brno Czech Republic
| | - Jiri Mayer
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
- Department of Internal medicine, Hematology and Oncology Faculty of Medicine Masaryk University Brno Czech Republic
- Internal Hematology and Oncology Clinic University Hospital Brno Brno Czech Republic
| | - Zdenek Racil
- Department of Molecular Medicine Central European Institute of TechnologyMasaryk University Brno Czech Republic
- Internal Hematology and Oncology Clinic University Hospital Brno Brno Czech Republic
| |
Collapse
|
20
|
Bayega A, Wang YC, Oikonomopoulos S, Djambazian H, Fahiminiya S, Ragoussis J. Transcript Profiling Using Long-Read Sequencing Technologies. Methods Mol Biol 2018; 1783:121-147. [PMID: 29767360 DOI: 10.1007/978-1-4939-7834-2_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA sequencing using next-generation sequencing (NGS, RNA-Seq) technologies is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise short-read RNA-Seq (dominated by Illumina) and long-read RNA-Seq technologies provided by Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT). Although short-read sequencing technologies are the most widely used, long-read technologies are increasingly becoming the standard approach for de novo transcriptome assembly and isoform expression quantification due to the complex nature of the transcriptome which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes. In this chapter, we describe experimental procedures for library preparation, sequencing, and associated data analysis approaches for PacBio and ONT with a major focus on full length cDNA synthesis, de novo transcriptome assembly, and isoform quantification.
Collapse
Affiliation(s)
- Anthony Bayega
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Yu Chang Wang
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Spyros Oikonomopoulos
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Haig Djambazian
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada.
- Department of Bioengineering, McGill University, Montréal, QC, Canada.
- Cancer and Mutagen Unit, King Fahd Center for Medical Research, Department of Biochemistry, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
21
|
Bayega A, Fahiminiya S, Oikonomopoulos S, Ragoussis J. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing. Methods Mol Biol 2018; 1783:209-241. [PMID: 29767365 DOI: 10.1007/978-1-4939-7834-2_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transcriptome encompasses a range of species including messenger RNA, and other noncoding RNA such as rRNA, tRNA, and short and long noncoding RNAs. Due to the huge role played by mRNA in development and disease, several methods have been developed to sequence and characterize mRNA, with RNA sequencing (RNA-Seq) emerging as the current method of choice particularly for large high-throughput studies. Short-read RNA-Seq which involves sequencing of short cDNA fragments and computationally assembling them to reconstruct the transcriptome, or aligning them to a reference is the most widely used approach. However, due to inherent limitations of this approach in de novo transcriptome assembly and isoform quantification, long-read RNA-Seq approaches, which also happen to be single molecule sequencing approaches, are increasingly becoming the standard for de novo transcriptome assembly and isoform quantification. In this chapter, we review the technical aspects of the current methods of RNA-Seq, both short and long-read approaches, and data analysis methods available. We discuss recent advances in single-cell RNA-Seq and direct RNA-Seq approaches, which perhaps will dominate the future of RNA-Seq.
Collapse
Affiliation(s)
- Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | | | - Spyros Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Department of Bioengineering, McGill University, Montréal, QC, Canada.
- Cancer and Mutagen Unit, Department of Biochemistry, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
22
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
23
|
Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli. J Biotechnol 2016; 236:159-65. [DOI: 10.1016/j.jbiotec.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
|
24
|
Fungtammasan A, Tomaszkiewicz M, Campos-Sánchez R, Eckert KA, DeGiorgio M, Makova KD. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats. Mol Biol Evol 2016; 33:2744-58. [PMID: 27413049 PMCID: PMC5026258 DOI: 10.1093/molbev/msw139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA–DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD.
Collapse
Affiliation(s)
- Arkarachai Fungtammasan
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Huck Institute of Genome Sciences, Pennsylvania State University
| | - Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University
| | - Rebeca Campos-Sánchez
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University
| | - Kristin A Eckert
- Center for Medical Genomics, Pennsylvania State University Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Institute for CyberScience, Pennsylvania State University
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Huck Institute of Genome Sciences, Pennsylvania State University
| |
Collapse
|
25
|
Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. Proc Natl Acad Sci U S A 2016; 113:3311-6. [PMID: 26884158 DOI: 10.1073/pnas.1525329113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.
Collapse
|
26
|
Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations. J Virol 2015; 89:8540-55. [PMID: 26041299 DOI: 10.1128/jvi.00522-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/30/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Collapse
|
27
|
Ogishi M, Yotsuyanagi H, Tsutsumi T, Gatanaga H, Ode H, Sugiura W, Moriya K, Oka S, Kimura S, Koike K. Deconvoluting the composition of low-frequency hepatitis C viral quasispecies: comparison of genotypes and NS3 resistance-associated variants between HCV/HIV coinfected hemophiliacs and HCV monoinfected patients in Japan. PLoS One 2015; 10:e0119145. [PMID: 25748426 PMCID: PMC4351984 DOI: 10.1371/journal.pone.0119145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/09/2015] [Indexed: 12/16/2022] Open
Abstract
Pre-existing low-frequency resistance-associated variants (RAVs) may jeopardize successful sustained virological responses (SVR) to HCV treatment with direct-acting antivirals (DAAs). However, the potential impact of low-frequency (∼0.1%) mutations, concatenated mutations (haplotypes), and their association with genotypes (Gts) on the treatment outcome has not yet been elucidated, most probably owing to the difficulty in detecting pre-existing minor haplotypes with sufficient length and accuracy. Herein, we characterize a methodological framework based on Illumina MiSeq next-generation sequencing (NGS) coupled with bioinformatics of quasispecies reconstruction (QSR) to realize highly accurate variant calling and genotype-haplotype detection. The core-to-NS3 protease coding sequences in 10 HCV monoinfected patients, 5 of whom had a history of blood transfusion, and 11 HCV/HIV coinfected patients with hemophilia, were studied. Simulation experiments showed that, for minor variants constituting more than 1%, our framework achieved a positive predictive value (PPV) of 100% and sensitivities of 91.7–100% for genotyping and 80.6% for RAV screening. Genotyping analysis indicated the prevalence of dominant Gt1a infection in coinfected patients (6/11 vs 0/10, p = 0.01). For clinical samples, minor genotype overlapping infection was prevalent in HCV/HIV coinfected hemophiliacs (10/11) and patients who experienced whole-blood transfusion (4/5) but none in patients without exposure to blood (0/5). As for RAV screening, the Q80K/R and S122K/R variants were particularly prevalent among minor RAVs observed, detected in 12/21 and 6/21 cases, respectively. Q80K was detected only in coinfected patients, whereas Q80R was predominantly detected in monoinfected patients (1/11 vs 7/10, p < 0.01). Multivariate interdependence analysis revealed the previously unrecognized prevalence of Gt1b-Q80K, in HCV/HIV coinfected hemophiliacs [Odds ratio = 13.4 (3.48–51.9), p < 0.01]. Our study revealed the distinct characteristics of viral quasispecies between the subgroups specified above and the feasibility of NGS and QSR-based genetic deconvolution of pre-existing minor Gts, RAVs, and their interrelationships.
Collapse
Affiliation(s)
- Masato Ogishi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| | - Takeya Tsutsumi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Wataru Sugiura
- Department of Infectious Diseases and Immunology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Kyoji Moriya
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Satoshi Kimura
- Director, Tokyo Teishin Hospital, Tokyo, Japan; President, Tokyo Health Care University, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
28
|
Abstract
This chapter describes the use of real-time qPCR to analyze the integrity of mitochondrial nucleic acids quantitatively. The method has low material requirement, is low cost, and can detect modifications with high resolution. The method is specifically designed for mitochondrial RNA and DNA, but can be easily transferred to other high-copy number cases. This procedure describes analyses of brain nucleic acids, but other tissues or cells can be analyzed similarly.
Collapse
|
29
|
Gill S, Krupovic M, Desnoues N, Béguin P, Sezonov G, Forterre P. A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2. Nucleic Acids Res 2014; 42:3707-19. [PMID: 24445805 PMCID: PMC3973330 DOI: 10.1093/nar/gkt1385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report the characterization of a DNA primase/polymerase protein (PolpTN2) encoded by the pTN2 plasmid from Thermococcus nautilus. Sequence analysis revealed that this protein corresponds to a fusion between an N-terminal domain homologous to the small catalytic subunit PriS of heterodimeric archaeal and eukaryotic primases (AEP) and a C-terminal domain related to their large regulatory subunit PriL. This unique domain configuration is not found in other virus- and plasmid-encoded primases in which PriS-like domains are typically fused to different types of helicases. PolpTN2 exhibited primase, polymerase and nucleotidyl transferase activities and specifically incorporates dNTPs, to the exclusion of rNTPs. PolpTN2 could efficiently prime DNA synthesis by the T. nautilus PolB DNA polymerase, suggesting that it is used in vivo as a primase for pTN2 plasmid replication. The N-terminal PriS-like domain of PolpTN2 exhibited all activities of the full-length enzyme but was much less efficient in priming cellular DNA polymerases. Surprisingly, the N-terminal domain possesses reverse transcriptase activity. We speculate that this activity could reflect an ancestral function of AEP proteins in the transition from the RNA to the DNA world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institut Pasteur Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France, CNRS UMR 7138 Systématique, Adaptation, Evolution, Université Paris 6 quai Saint-Bernard, 75252 Paris Cedex 05, France and Univ Paris-Sud Institut de Génétique et Microbiologie, CNRS UMR 8621, Orsay 91406, France
| | | | | | | | | | | |
Collapse
|
30
|
Álvarez M, Menéndez-Arias L. Temperature effects on the fidelity of a thermostable HIV-1 reverse transcriptase. FEBS J 2013; 281:342-51. [PMID: 24279450 DOI: 10.1111/febs.12605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/04/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Abstract
Transcriptomics and gene expression analysis are largely dependent of the availability of efficient thermostable reverse transcriptases (RTs). However, the intrinsic fidelity of DNA synthesis catalyzed by retroviral RTs is low. Reported error rates are in the range 1.2 × 10(-5)-6.7 × 10(-4), with oncoretroviral RTs being the most faithful enzymes. Wild-type HIV-1 group O (HIV-1O) RT is a thermostable polymerase that is able to synthesize cDNA at temperatures as high as 70 °C. At 37 °C, its error rate has been estimated at 5.8 × 10(-5) in M13mp2 lacZ-based forward mutation assays. However, at higher temperatures (e.g. 50 and 55 °C), the accuracy of HIV-1O RT is increased by approximately two- to five-fold. At 55 °C, the HIV-1O RT error rate (1.3 × 10(-5)) was similar to that shown by the AffinityScript (Agilent Technologies Inc., La Jolla, CA, USA) RT, a commercially available thermostable murine leukaemia virus RT. At higher temperatures, the increased accuracy of the HIV-1 enzyme results from a lower base substitution error rate, although it shows a higher tendency to introduce frameshifts. Kinetic studies carried out with model template-primers suggest minor differences in nucleotide discrimination, although, at higher temperatures, HIV-1O RT showed a reduced ability to extend mispaired template-primers.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
31
|
Wong THN, Dearlove BL, Hedge J, Giess AP, Piazza P, Trebes A, Paul J, Smit E, Smith EG, Sutton JK, Wilcox MH, Dingle KE, Peto TEA, Crook DW, Wilson DJ, Wyllie DH. Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England. Virol J 2013; 10:335. [PMID: 24220146 PMCID: PMC3874643 DOI: 10.1186/1743-422x-10-335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012. METHOD Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences. RESULTS Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2. CONCLUSION Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen.
Collapse
Affiliation(s)
- T H Nicholas Wong
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Bethany L Dearlove
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jessica Hedge
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adam P Giess
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Amy Trebes
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - John Paul
- Public Health Laboratory, Royal Sussex County Hospital, Brighton, UK
| | - Erasmus Smit
- Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK
| | - E Grace Smith
- Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Julian K Sutton
- Public Health Laboratory, Southampton General Hospital, Southampton, UK
| | - Mark H Wilcox
- Public Health Laboratory, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate E Dingle
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| | - Daniel J Wilson
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - David H Wyllie
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Public Health England Collaborating Centre, Oxford; John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
32
|
Mohr S, Ghanem E, Smith W, Sheeter D, Qin Y, King O, Polioudakis D, Iyer VR, Hunicke-Smith S, Swamy S, Kuersten S, Lambowitz AM. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA (NEW YORK, N.Y.) 2013; 19:958-70. [PMID: 23697550 PMCID: PMC3683930 DOI: 10.1261/rna.039743.113] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically. Here, we developed general methods for the high-level expression and purification of group II intron-encoded RTs as fusion proteins with a rigidly linked, noncleavable solubility tag, and we applied them to group II intron RTs from bacterial thermophiles. We thus obtained thermostable group II intron RT fusion proteins that have higher processivity, fidelity, and thermostability than retroviral RTs, synthesize cDNAs at temperatures up to 81°C, and have significant advantages for qRT-PCR, capillary electrophoresis for RNA-structure mapping, and next-generation RNA sequencing. Further, we find that group II intron RTs differ from the retroviral enzymes in template switching with minimal base-pairing to the 3' ends of new RNA templates, making it possible to efficiently and seamlessly link adaptors containing PCR-primer binding sites to cDNA ends without an RNA ligase step. This novel template-switching activity enables facile and less biased cloning of nonpolyadenylated RNAs, such as miRNAs or protein-bound RNA fragments. Our findings demonstrate novel biochemical activities and inherent advantages of group II intron RTs for research, biotechnological, and diagnostic methods, with potentially wide applications.
Collapse
Affiliation(s)
- Sabine Mohr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Eman Ghanem
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Whitney Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dennis Sheeter
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Olga King
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Damon Polioudakis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Vishwanath R. Iyer
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Scott Hunicke-Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | - Scott Kuersten
- Epicentre—An Illumina Company, Madison, Wisconsin 53713, USA
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Corresponding authorE-mail
| |
Collapse
|
33
|
Baranauskas A, Paliksa S, Alzbutas G, Vaitkevicius M, Lubiene J, Letukiene V, Burinskas S, Sasnauskas G, Skirgaila R. Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel 2012; 25:657-68. [PMID: 22691702 DOI: 10.1093/protein/gzs034] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized ribosome display (CRD) evolution in vitro technique and identified a large set of previously unknown mutations that enabled cDNA synthesis at elevated temperatures. In this study, we have characterized a group of the M-MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations. The performance of point mutants (thermal inactivation rate, substrate-binding affinity and processivity) correlated remarkably well with the mutation selection frequency in the CRD experiment. By combining the best-performing mutations D200N, L603W, T330P, L139P and E607K, we have generated highly processive and thermostable multiply-mutated M-MuLV RT variants. The processivity of the best-performing multiple mutant increased to 1500 nt (65-fold improvement in comparison to the wt enzyme), and the maximum temperature of the full-length 7.5-kb cDNA synthesis was raised to 62°C (17° higher in comparison with the wt enzyme).
Collapse
|
34
|
Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H, Fujiwara S. Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng 2011; 113:315-21. [PMID: 22143068 DOI: 10.1016/j.jbiosc.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Family A DNA polymerase (K4PolI) from Thermotoga petrophila K4 was obtained as a recombinant form, and the enzyme characteristics were analyzed. K4PolI showed thermostable DNA-dependent DNA polymerase activity with 3'-5' exonuclease activity but no detectable RNA-dependent DNA polymerase activity. Its tertiary structure was speculated by in silico modeling to understand the binding situation between K4PolI and template DNA. Nine amino acids in the 3'-5' exonuclease domain are predicted to be involved in DNA/RNA distinction by steric interference with the 2' hydroxy group of ribose. To allow K4PolI to accept RNA as the template, mutants were constructed focusing on the amino acids located around the 2' hydroxyl group of the bound ribose. The mutants in which Thr326, Leu329, Gln384, Phe388, Met408, or Tyr438 was replaced with Ala (designated as T326A, L329A, Q384A, F388A, M408A, or Y438A, respectively) showed RNA-dependent DNA polymerase activity. All the mutants showed reduced 3'-5' exonuclease activity, suggesting that gain of reverse transcriptase activity is correlated with loss of 3'-5' exonuclease activity. In particular, the mutants enabled direct DNA amplification in a single tube format from structured RNA that was not efficiently amplified by retroviral reverse transcriptase.
Collapse
Affiliation(s)
- Sotaro Sano
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc Natl Acad Sci U S A 2011; 108:20509-13. [PMID: 22135458 DOI: 10.1073/pnas.1105797108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of resistance to direct-acting antivirals (DAAs) targeting the hepatitis C virus (HCV) can compromise therapy. However, mechanisms that determine prevalence and frequency of resistance-conferring mutations remain elusive. Here, we studied the fidelity of the HCV RNA-dependent RNA polymerase NS5B in an attempt to link the efficiency of mismatch formation with genotypic changes observed in vivo. Enzyme kinetic measurements revealed unexpectedly high error rates (approximately 10(-3) per site) for G:U/U:G mismatches. The strong preference for G:U/U:G mismatches over all other mistakes correlates with a mutational bias in favor of transitions over transversions. Deep sequencing of HCV RNA samples isolated from 20 treatment-naïve patients revealed an approximately 75-fold difference in frequencies of the two classes of mutations. A stochastic model based on these results suggests that the bias toward transitions can also affect the selection of resistance-conferring mutations. Collectively, the data provide strong evidence to suggest that the nature of the nucleotide change can contribute to the genetic barrier in the development of resistance to DAAs.
Collapse
|
36
|
Bickhart DM, Benson DR. Transcriptomes of Frankia sp. strain CcI3 in growth transitions. BMC Microbiol 2011; 11:192. [PMID: 21867524 PMCID: PMC3188489 DOI: 10.1186/1471-2180-11-192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high.
Collapse
Affiliation(s)
- Derek M Bickhart
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
37
|
Wright CF, Morelli MJ, Thébaud G, Knowles NJ, Herzyk P, Paton DJ, Haydon DT, King DP. Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. J Virol 2011; 85:2266-75. [PMID: 21159860 PMCID: PMC3067773 DOI: 10.1128/jvi.01396-10] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/29/2010] [Indexed: 01/03/2023] Open
Abstract
The diverse sequences of viral populations within individual hosts are the starting material for selection and subsequent evolution of RNA viruses such as foot-and-mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome Analyzer platform (Illumina), this study compared the viral populations within two bovine epithelial samples (foot lesions) from a single animal with the inoculum used to initiate experimental infection. Genomic sequences were determined in duplicate sequencing runs, and the consensus sequence of the inoculum determined by NGS was identical to that previously determined using the Sanger method. However, NGS revealed the fine polymorphic substructure of the viral population, from nucleotide variants present at just below 50% frequency to those present at fractions of 1%. Some of the higher-frequency polymorphisms identified encoded changes within codons associated with heparan sulfate binding and were present in both foot lesions, revealing intermediate stages in the evolution of a tissue culture-adapted virus replicating within a mammalian host. We identified 2,622, 1,434, and 1,703 polymorphisms in the inoculum and in the two foot lesions, respectively: most of the substitutions occurred in only a small fraction of the population and represented the progeny from recent cellular replication prior to onset of any selective pressures. We estimated the upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 × 10(-4) per nucleotide. The greater depth of detection achieved by NGS demonstrates that this method is a powerful and valuable tool for the dissection of FMDV populations within hosts.
Collapse
Affiliation(s)
- Caroline F. Wright
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Marco J. Morelli
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gaël Thébaud
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nick J. Knowles
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Pawel Herzyk
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - David J. Paton
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Daniel T. Haydon
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Donald P. King
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom, MRC, University of Glasgow Centre for Virus Research, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, Institut National de la Recherche Agronomique (INRA), UMR BGPI, Cirad TA A-54/K, Campus de Baillarguet, 34938 Montpellier Cedex 5, France, The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
38
|
Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework. PLANT DESICCATION TOLERANCE 2011. [DOI: 10.1007/978-3-642-19106-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Tromas N, Elena SF. The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 2010; 185:983-9. [PMID: 20439778 PMCID: PMC2907213 DOI: 10.1534/genetics.110.115915] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/30/2010] [Indexed: 11/18/2022] Open
Abstract
Knowing mutation rates and the molecular spectrum of spontaneous mutations is important to understanding how the genetic composition of viral populations evolves. Previous studies have shown that the rate of spontaneous mutations for RNA viruses widely varies between 0.01 and 2 mutations per genome and generation, with plant RNA viruses always occupying the lower side of this range. However, this peculiarity of plant RNA viruses is based on a very limited number of studies. Here we analyze the spontaneous mutational spectrum and the mutation rate of Tobacco etch potyvirus, a model system of positive sense RNA viruses. Our experimental setup minimizes the action of purifying selection on the mutational spectrum, thus giving a picture of what types of mutations are produced by the viral replicase. As expected for a neutral target, we found that transitions and nonsynonymous (including a few stop codons and small deletions) mutations were the most abundant type. This spectrum was notably different from the one previously described for another plant virus. We have estimated that the spontaneous mutation rate for this virus was in the range 10(-6)-10(-5) mutations per site and generation. Our estimates are in the same biological ballpark that previous values reported for plant RNA viruses. This finding gives further support to the idea that plant RNA viruses may have lower mutation rates than their animal counterparts.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 València, Spain and The Santa Fe Institute, Santa Fe, New Mexico 87501
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 València, Spain and The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
40
|
Increased Thermostability and Fidelity of DNA Synthesis of Wild-Type and Mutant HIV-1 Group O Reverse Transcriptases. J Mol Biol 2009; 392:872-84. [DOI: 10.1016/j.jmb.2009.07.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/24/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022]
|
41
|
Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 2009; 69:4434-42. [PMID: 19366804 DOI: 10.1158/0008-5472.can-08-3605] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the androgen receptor (AR) that enable activation by antiandrogens occur in hormone-refractory prostate cancer, suggesting that mutant ARs are selected by treatment. To validate this hypothesis, we compared AR variants in metastases obtained by rapid autopsy of patients treated with flutamide or bicalutamide, or by excision of lymph node metastases from hormone-naïve patients. AR mutations occurred at low levels in all specimens, reflecting genetic heterogeneity of prostate cancer. Base changes recurring in multiple samples or multiple times per sample were considered putative selected mutations. Of 26 recurring missense mutations, most in the NH(2)-terminal domain (NTD) occurred in multiple tumors, whereas those in the ligand binding domain (LBD) were case specific. Hormone-naïve tumors had few recurring mutations and none in the LBD. Several AR variants were assessed for mechanisms that might underlie treatment resistance. Selection was evident for the promiscuous receptor AR-V716M, which dominated three metastases from one flutamide-treated patient. For the inactive cytoplasmically restricted splice variant AR23, coexpression with AR enhanced ligand response, supporting a decoy function. A novel NTD mutation, W435L, in a motif involved in intramolecular interaction influenced promoter-selective, cell-dependent transactivation. AR-E255K, mutated in a domain that interacts with an E3 ubiquitin ligase, led to increased protein stability and nuclear localization in the absence of ligand. Thus, treatment with antiandrogens selects for gain-of-function AR mutations with altered stability, promoter preference, or ligand specificity. These processes reveal multiple targets for effective therapies regardless of AR mutation.
Collapse
Affiliation(s)
- Mara P Steinkamp
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sanjuán R, Agudelo-Romero P, Elena SF. Upper-limit mutation rate estimation for a plant RNA virus. Biol Lett 2009; 5:394-6. [PMID: 19324646 DOI: 10.1098/rsbl.2008.0762] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is generally accepted that mutation rates of RNA viruses are inherently high due to the lack of proofreading mechanisms. However, direct estimates of mutation rate are surprisingly scarce, in particular for plant viruses. Here, based on the analysis of in vivo mutation frequencies in tobacco etch virus, we calculate an upper-bound mutation rate estimation of 3x10(-5) per site and per round of replication; a value which turns out to be undistinguishable from the methodological error. Nonetheless, the value is barely on the lower side of the range accepted for RNA viruses, although in good agreement with the only direct estimate obtained for other plant viruses. These observations suggest that, perhaps, differences in the selective pressures operating during plant virus evolution may have driven their mutation rates towards values lower than those characteristic of other RNA viruses infecting bacteria or animals.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | | | | |
Collapse
|
43
|
Cottam EM, King DP, Wilson A, Paton DJ, Haydon DT. Analysis of Foot-and-mouth disease virus nucleotide sequence variation within naturally infected epithelium. Virus Res 2008; 140:199-204. [PMID: 19027805 DOI: 10.1016/j.virusres.2008.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022]
Abstract
An important epidemiological tool in the control of epidemics of Foot-and-mouth disease (FMD) is genetic tracing using complete virus genome sequence data. However to interpret these genetic data, it is important to quantify underlying variation present in FMDV populations from individual tissue samples. Cloned complete capsid sequences from two virus populations from epithelium from a cow (n=26) and from a sheep (n=15) infected during the UK 2001 outbreaks were generated. Genetic diversity of the two virus populations differed significantly, with sequences representing virus from the cow having a mutation frequency of 2.79 x 10(-4) mutations per nucleotide sequenced (mpns) and those from the sheep having 3.94 x 10(-4) mpns (chi(2)=8.24, P=0.004). The dN/dS ratio of sequences from the cow was higher (1.228) than that from the sheep (0.187) although not significantly so. The sequences from the cow epithelium exhibited significantly higher than expected number of changes within neutralising antigenic sites (P=0.0007). The performance of two different reverse transcriptase enzymes was found not to differ with respect to the frequency (P=0.559, chi(2)=0.341) or dN/dS ratio (P=0.863, chi(2)=0.03) of the mutations observed. These data provide insight into the population diversity that exists within a single lesion and help toward understanding the mechanisms that underpin sequence evolution of FMDV.
Collapse
Affiliation(s)
- Eleanor M Cottam
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey, England GU24 0NF, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Rittié L, Perbal B. Enzymes used in molecular biology: a useful guide. J Cell Commun Signal 2008; 2:25-45. [PMID: 18766469 DOI: 10.1007/s12079-008-0026-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/13/2008] [Indexed: 12/31/2022] Open
Abstract
Since molecular cloning has become routine laboratory technique, manufacturers offer countless sources of enzymes to generate and manipulate nucleic acids. Thus, selecting the appropriate enzyme for a specific task may seem difficult to the novice. This review aims at providing the readers with some cues for understanding the function and specificities of the different sources of polymerases, ligases, nucleases, phosphatases, methylases, and topoisomerases used for molecular cloning. We provide a description of the most commonly used enzymes of each group, and explain their properties and mechanism of action. By pointing out key requirements for each enzymatic activity and clarifying their limitations, we aim at guiding the reader in selecting appropriate enzymatic source and optimal experimental conditions for molecular cloning experiments.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA,
| | | |
Collapse
|
45
|
Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci U S A 2008; 105:13081-6. [PMID: 18723673 DOI: 10.1073/pnas.0801523105] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During the clonal expansion of cancer from an ancestral cell with an initiating oncogenic mutation to symptomatic neoplasm, the occurrence of somatic mutations (both driver and passenger) can be used to track the on-going evolution of the neoplasm. All subclones within a cancer are phylogenetically related, with the prevalence of each subclone determined by its evolutionary fitness and the timing of its origin relative to other subclones. Recently developed massively parallel sequencing platforms promise the ability to detect rare subclones of genetic variants without a priori knowledge of the mutations involved. We used ultra-deep pyrosequencing to investigate intraclonal diversification at the Ig heavy chain locus in 22 patients with B-cell chronic lymphocytic leukemia. Analysis of a non-polymorphic control locus revealed artifactual insertions and deletions resulting from sequencing errors and base substitutions caused by polymerase misincorporation during PCR amplification. We developed an algorithm to differentiate genuine haplotypes of somatic hypermutations from such artifacts. This proved capable of detecting multiple rare subclones with frequencies as low as 1 in 5000 copies and allowed the characterization of phylogenetic interrelationships among subclones within each patient. This study demonstrates the potential for ultra-deep resequencing to recapitulate the dynamics of clonal evolution in cancer cell populations.
Collapse
|
46
|
Baysal BE. A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS One 2007; 2:e436. [PMID: 17487275 PMCID: PMC1855983 DOI: 10.1371/journal.pone.0000436] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/15/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Somatic cytidine mutations in normal mammalian nuclear genes occur during antibody diversification in B lymphocytes and generate an isoform of apolipoprotein B in intestinal cells by RNA editing. Here, I describe that succinate dehydrogenase (SDH; mitochondrial complex II) subunit B gene (SDHB) is somatically mutated at a cytidine residue in normal peripheral blood mononuclear cells (PBMCs) and T-cell acute leukemia. Germ line mutations in the SDHB, SDHC or SDHD genes cause hereditary paraganglioma (PGL) tumors which show constitutive activation of homeostatic mechanisms induced by oxygen deprivation (hypoxia). PRINCIPAL FINDINGS To determine the prevalence of a mutation identified in the SDHB mRNA, 180 samples are tested. An SDHB stop-codon mutation c.136C>T (R46X) is present in a significant fraction (average = 5.8%, range = less than 1 to 30%, n = 52) of the mRNAs obtained from PBMCs. In contrast, the R46X mutation is present in the genomic DNA of PBMCs at very low levels. Examination of the PBMC cell-type subsets identifies monocytes and natural killer (NK) cells as primary sources of the mutant transcript, although lesser contributions also come from B and T lymphocytes. Transcript sequence analyses in leukemic cell lines derived from monocyte, NK, T and B cells indicate that the mutational mechanism targeting SDHB is operational in T-cell acute leukemia. Accordingly, substantial levels (more than 3%) of the mutant SDHB transcripts are detected in five of 20 primary childhood T-cell acute lymphoblastic leukemia (T-ALL) bone marrow samples, but in none of 20 B-ALL samples. In addition, distinct heterozygous SDHB missense DNA mutations are identified in Jurkat and TALL-104 cell lines which are derived from T-ALLs. CONCLUSIONS The identification of a recurrent, inactivating stop-codon mutation in the SDHB gene in normal blood cells suggests that SDHB is targeted by a cytidine deaminase enzyme. The SDHB mutations in normal PBMCs and leukemic T cells might play a role in cellular pre-adaptation to hypoxia.
Collapse
Affiliation(s)
- Bora E Baysal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| |
Collapse
|