1
|
Gaudreault J, Forest-Nault C, Gilbert M, Durocher Y, Henry O, De Crescenzo G. A low-temperature SPR-based assay for monoclonal antibody galactosylation and fucosylation assessment using FcγRIIA/B. Biotechnol Bioeng 2024; 121:1659-1673. [PMID: 38351869 DOI: 10.1002/bit.28673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | | | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Québec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Gaudreault J, Durocher Y, Henry O, De Crescenzo G. Multi-temperature experiments to ease analysis of heterogeneous binder solutions by surface plasmon resonance biosensing. Sci Rep 2022; 12:14401. [PMID: 36002549 PMCID: PMC9402583 DOI: 10.1038/s41598-022-18450-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Surface Plasmon Resonance (SPR) biosensing is a well-established tool for the investigation of binding kinetics between a soluble species and an immobilized (bio)molecule. While robust and accurate data analysis techniques are readily available for single species, methods to exploit data collected with a solution containing multiple interactants are scarce. In a previous study, our group proposed two data analysis algorithms for (1) the precise and reliable identification of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the composition of a given mixture, assuming that the kinetic parameters and the total concentration of all interactants are known. Here, we extend the first algorithm by reducing the number of necessary mixtures. This is achieved by conducting experiments at different temperatures. Through the Van't Hoff and Eyring equations, identifying the kinetic and thermodynamic parameters of N binders becomes possible with M mixtures with M comprised between 2 and N and at least N/M temperatures. The second algorithm is improved by adding the total analyte concentration as a supplementary variable to be identified in an optimization routine. We validated our analysis framework experimentally with a system consisting of mixtures of low molecular weight drugs, each competing to bind to an immobilized protein. We believe that the analysis of mixtures and composition estimation could pave the way for SPR biosensing to become a bioprocess monitoring tool, on top of expanding its already substantial role in drug discovery and development.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC, H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
3
|
On the Use of Surface Plasmon Resonance-Based Biosensors for Advanced Bioprocess Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomanufacturers are being incited by regulatory agencies to transition from a quality by testing framework, where they extensively test their product after their production, to more of a quality by design or even quality by control framework. This requires powerful analytical tools and sensors enabling measurements of key process variables and/or product quality attributes during production, preferably in an online manner. As such, the demand for monitoring technologies is rapidly growing. In this context, we believe surface plasmon resonance (SPR)-based biosensors can play a role in enabling the development of improved bioprocess monitoring and control strategies. The SPR technique has been profusely used to probe the binding behavior of a solution species with a sensor surface-immobilized partner in an investigative context, but its ability to detect binding in real-time and without a label has been exploited for monitoring purposes and is promising for the near future. In this review, we examine applications of SPR that are or could be related to bioprocess monitoring in three spheres: biotherapeutics production monitoring, vaccine monitoring, and bacteria and contaminant detection. These applications mainly exploit SPR’s ability to measure solution species concentrations, but performing kinetic analyses is also possible and could prove useful for product quality assessments. We follow with a discussion on the limitations of SPR in a monitoring role and how recent advances in hardware and SPR response modeling could counter them. Mainly, throughput limitations can be addressed by multi-detection spot instruments, and nonspecific binding effects can be alleviated by new antifouling materials. A plethora of methods are available for cell growth and metabolism monitoring, but product monitoring is performed mainly a posteriori. SPR-based biosensors exhibit potential as product monitoring tools from early production to the end of downstream processing, paving the way for more efficient production control. However, more work needs to be done to facilitate or eliminate the need for sample preprocessing and to optimize the experimental protocols.
Collapse
|
4
|
Gaudreault J, Liberelle B, Durocher Y, Henry O, De Crescenzo G. Determination of the composition of heterogeneous binder solutions by surface plasmon resonance biosensing. Sci Rep 2021; 11:3685. [PMID: 33574483 PMCID: PMC7878517 DOI: 10.1038/s41598-021-83268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022] Open
Abstract
Surface plasmon resonance-based biosensors have been extensively applied to the characterization of the binding kinetics between purified (bio)molecules, thanks to robust data analysis techniques. However, data analysis for solutions containing multiple interactants is still at its infancy. We here present two algorithms for (1) the reliable and accurate determination of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the ratios of each interactant in a given mixture, assuming that their kinetic parameters are known. Both algorithms assume that the interactants compete to bind to an immobilized ligand in a 1:1 fashion and necessitate prior knowledge of the total concentration of all interactants combined. The effectiveness of these two algorithms was experimentally validated with a model system corresponding to mixtures of four small molecular weight drugs binding to an immobilized protein. This approach enables the in-depth characterization of mixtures using SPR, which may be of considerable interest for many drug discovery or development applications, notably for protein glycovariant analysis.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC, H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
5
|
Kastenhofer J, Rajamanickam V, Libiseller-Egger J, Spadiut O. Monitoring and control of E. coli cell integrity. J Biotechnol 2021; 329:1-12. [PMID: 33485861 DOI: 10.1016/j.jbiotec.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Soluble expression of recombinant proteins in E. coli is often done by translocation of the product across the inner membrane (IM) into the periplasm, where it is retained by the outer membrane (OM). While the integrity of the IM is strongly coupled to viability and impurity release, a decrease in OM integrity (corresponding to increased "leakiness") leads to accumulation of product in the extracellular space, strongly impacting the downstream process. Whether leakiness is desired or not, differential monitoring and control of IM and OM integrity are necessary for an efficient E. coli bioprocess in compliance with the guidelines of Quality by Design and Process Analytical Technology. In this review, we give an overview of relevant monitoring tools, summarize the research on factors affecting E. coli membrane integrity and provide a brief discussion on how the available monitoring technology can be implemented in real-time control of E. coli cultivations.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Vignesh Rajamanickam
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Julian Libiseller-Egger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
6
|
Abstract
Real-time monitoring of product titers during process development and production of biotherapeutics facilitate implementation of quality-by-design principles and enable rapid bioprocess decision and optimization of the production process. Conventional analytical methods are generally performed offline/at-line and, therefore, are not capable of generating real-time data. In this study, a novel fiber optical nanoplasmonic sensor technology was explored for rapid IgG titer measurements. The sensor combines localized surface plasmon resonance transduction and robust single use Protein A-modified sensor chips, housed in a flexible flow cell, for specific IgG detection. The sensor requires small sample volumes (1–150 µL) and shows a reproducibility and sensitivity comparable to Protein G high performance liquid chromatography-ultraviolet (HPLC-UV). The dynamic range of the sensor system can be tuned by varying the sample volume, which enables quantification of IgG samples ranging from 0.0015 to 10 mg/mL, without need for sample dilution. The sensor shows limited interference from the sample matrix and negligible unspecific protein binding. IgG titers can be rapidly determined in samples from filtered unpurified Chinese hamster ovary (CHO) cell cultures and show good correlation with enzyme-linked immunosorbent assay (ELISA).
Collapse
|
7
|
Zschätzsch M, Ritter P, Henseleit A, Wiehler K, Malik S, Bley T, Walther T, Boschke E. Monitoring bioactive and total antibody concentrations for continuous process control by surface plasmon resonance spectroscopy. Eng Life Sci 2020; 19:681-690. [PMID: 32624961 DOI: 10.1002/elsc.201900014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy - a fast, real-time, and label-free bio-sensing method - represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme-linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target-monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme-linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target-layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance-based system for continuous process monitoring.
Collapse
Affiliation(s)
- Marlen Zschätzsch
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | - Anja Henseleit
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | | | - Thomas Bley
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Walther
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Elke Boschke
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
8
|
Durous L, Julien T, Padey B, Traversier A, Rosa-Calatrava M, Blum LJ, Marquette CA, Petiot E. SPRi-based hemagglutinin quantitative assay for influenza vaccine production monitoring. Vaccine 2019; 37:1614-1621. [DOI: 10.1016/j.vaccine.2019.01.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
|
9
|
Abali F, Stevens M, Tibbe AGJ, Terstappen LWMM, van der Velde PN, Schasfoort RBM. Isolation of single cells for protein therapeutics using microwell selection and Surface Plasmon Resonance imaging. Anal Biochem 2017; 531:45-47. [PMID: 28545866 DOI: 10.1016/j.ab.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Here the feasibility is demonstrated that by combining Surface Plasmon Resonance Imaging (SPRi) and self-sorting microwell technology product secretion of individual cells can be monitored. Additionally isolation of the selected cells can be performed by punching the cells from the microwells using coordinates of the positions of microwells obtained with SPRi. Cells of interest can be retrieved sterile from the microwell array for further cultivation.
Collapse
Affiliation(s)
- F Abali
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - M Stevens
- VyCAP, Abraham Rademakerstraat 41, 7425PG Deventer, The Netherlands
| | - A G J Tibbe
- VyCAP, Abraham Rademakerstraat 41, 7425PG Deventer, The Netherlands
| | - L W M M Terstappen
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | - R B M Schasfoort
- Medical Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands; Interfluidics BV, Duizendblad 28, 7483 AL Haaksbergen, The Netherlands
| |
Collapse
|
10
|
Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, Lo SC, Tan JS, Hani H, Rasedee A. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnol Appl Biochem 2017; 64:735-744. [PMID: 27506960 DOI: 10.1002/bab.1528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
Collapse
Affiliation(s)
- Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazariah Allaudin Zeenathul
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Morvarid Akhavan Rezaei
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nor Hidayah Mustafa
- Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Lila Mohd Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sewn Cen Lo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Laboratory of Immunotherapeutic and Vaccine Technology (LIVES), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
11
|
Dorion-Thibaudeau J, Durocher Y, De Crescenzo G. Quantification and simultaneous evaluation of the bioactivity of antibody produced in CHO cell culture-The use of the ectodomain of FcγRI and surface plasmon resonance-based biosensor. Mol Immunol 2016; 82:46-49. [PMID: 28012362 DOI: 10.1016/j.molimm.2016.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
Abstract
A surface plasmon resonance (SPR)-based assay has been developed in order to quantify the monoclonal antibody (Mab) Trastuzumab within the supernatant of a mammalian cell culture using the ectodomain of FcγRI (CD64) and confirm Mab bioactivity, i.e. binding to its antigen Her2, in a single biosensing experiment. Under partial mass transport limitation, we were able to quantify Mab present in unpurified samples taken throughout the cell culture. While Mab capture on the biosensor surface confirmed the ability of its Fc region to bind to FcγRI, the binding activity of its Fab region was also tested by injecting increasing concentrations of the Mab antigen (Her2). The kinetics of the interactions we recorded from 48h post transfection until the end of the culture, were superimposable, which highly suggested that the quality attributes of the antibody were conserved throughout the process. This SPR methodology is thus of great interest for atline quality control analysis during Mab production campaign.
Collapse
Affiliation(s)
- July Dorion-Thibaudeau
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada; Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal QC H4P 2R2, Canada
| | - Yves Durocher
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal QC H4P 2R2, Canada; Biochemical Department, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
12
|
|
13
|
Jacquemart R, Vandersluis M, Zhao M, Sukhija K, Sidhu N, Stout J. A Single-use Strategy to Enable Manufacturing of Affordable Biologics. Comput Struct Biotechnol J 2016; 14:309-18. [PMID: 27570613 PMCID: PMC4990569 DOI: 10.1016/j.csbj.2016.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 11/23/2022] Open
Abstract
The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.
Collapse
Key Words
- Affinity membrane chromatography
- Antibody manufacturing paradigms
- B&E, bind and elute
- CapEx, capital expense
- CoG, cost of goods
- Continuous bioprocessing
- DSP, downstream process
- EBA, expanded bed adsorption
- EMA, European Medicines Agency
- FDA, Food and Drug Administration
- FT, flow through
- Flexible, single-use facilities
- HCP, host cell protein
- MV, membrane volume
- OpEx, operating expense
- PAT, process analytical technology
- Process economics
- SMB, simulated moving bed
- USP, upstream process
- cGMP, current good manufacturing practice
Collapse
Affiliation(s)
- Renaud Jacquemart
- Natrix Separations Inc., 5295 John Lucas Drive, Burlington, Ontario L7L 6A8, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Modeling single cell antibody excretion on a biosensor. Anal Biochem 2016; 504:1-3. [DOI: 10.1016/j.ab.2016.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/01/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022]
|
15
|
Feng F, Kepler TB. Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology. PLoS One 2015; 10:e0130812. [PMID: 26098764 PMCID: PMC4476803 DOI: 10.1371/journal.pone.0130812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Surface plasmon resonance (SPR) has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC) algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.
Collapse
Affiliation(s)
- Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, United States of America
- * E-mail:
| | - Thomas B. Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, United States of America
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, 02118, United States of America
| |
Collapse
|
16
|
Stojanović I, van der Velden TJG, Mulder HW, Schasfoort RBM, Terstappen LWMM. Quantification of antibody production of individual hybridoma cells by surface plasmon resonance imaging. Anal Biochem 2015; 485:112-8. [PMID: 26095397 DOI: 10.1016/j.ab.2015.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/30/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022]
Abstract
Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies recognizing epithelial cell adhesion molecule (EpCAM), were used. Recombinant human EpCAM protein was immobilized on an SPR sensor and hybridoma cells were introduced into an IBIS MX96 SPR imager and the SPRi response was followed for 10h. SPRi responses were detected on the spots of the sensor only where ligands of the produced antibody were present. By measuring the SPRi signals on individual cells the antibody production of the individual cells was measured and production rates were calculated. For 53 single EpCAM hybridoma cells the production ranged from 0.16 to 11.95 pg (mean 2.96p g per cell, SD 2.51) over a period of 10 h. Antibody excretion per cell per hour ranged from 0.02 to 1.19 pg (mean 0.30, SD 0.25). Here we demonstrate for the first time that antibody production of individual cells can be measured and quantified by SPRi, opening a new avenue for measuring excretion products of individual cells.
Collapse
Affiliation(s)
- Ivan Stojanović
- Medical Cell BioPhysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.
| | - Thomas J G van der Velden
- Medical Cell BioPhysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; IBIS Technologies B.V., 7521 PR Enschede, The Netherlands
| | - Heleen W Mulder
- Medical Cell BioPhysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Richard B M Schasfoort
- Medical Cell BioPhysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; IBIS Technologies B.V., 7521 PR Enschede, The Netherlands
| | - Leon W M M Terstappen
- Medical Cell BioPhysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Kepsutlu B, Kizilel R, Kizilel S. Quantification of interactions among circadian clock proteins via surface plasmon resonance. J Mol Recognit 2014; 27:458-69. [PMID: 24895278 DOI: 10.1002/jmr.2367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/01/2013] [Accepted: 01/29/2014] [Indexed: 11/11/2022]
Abstract
Circadian clock is an internal time keeping system recurring 24 h daily rhythm in physiology and behavior of organisms. Circadian clock contains transcription and translation feedback loop involving CLOCK/NPAS2, BMAL1, Cry1/2, and Per1/2. In common, heterodimer of CLOCK/NPAS2 and BMAL1 binds to EBOX element in the promoter of Per and Cry genes in order to activate their transcription. CRY and PER making heterodimeric complexes enter the nucleus in order to inhibit their own BMAL1-CLOCK-activated transcription. The aim of this study was to investigate and quantify real-time binding affinities of clock proteins among each other on and off DNA modes using surface plasmon resonance. The pairwise interaction coefficients among clock proteins, as well as interaction of PER2, CRY2, and PER2 : CRY2 proteins with BMAL1 : CLOCK complex in the presence and absence of EBOX motif have been investigated via analysis of surface plasmon resonance data with pseudo first-order reaction kinetics approximation and via nonlinear regression curve fitting. The results indicated that CRY2 and PER2, BMAL1, and CLOCK proteins form complexes in vitro and that PER2, CRY2 and PER2 : CRY2 complex have similar affinities toward BMAL1 : CLOCK complex. CRY2 protein had the highest affinity toward EBOX complex, whereas PER2 and CRY2 : PER2 complexes displayed low affinity toward EBOX complex. The quantification of the interaction between clock proteins is critical to understand the operation mechanism of the biological clock and to address the behavioral and physiological disorders, and it will be useful for the design of new drugs toward clock-related diseases.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, 34450, Turkey
| | | | | |
Collapse
|
18
|
Abstract
Surface plasmon resonance (SPR) biosensors have become the mainstream method for biomolecular interaction analysis. It offers many advantages over conventional methods by its label-free, real-time monitoring, low sample consumption, high throughput, and remarkable sensitivity. We have examined dengue virus protein interactions in the context of antibody affinity measurement, protein-protein interaction, and in the screening of small molecule inhibitors as well as the characterization of the interactions between the small molecule binders and the relevant dengue protein. Here we describe the basic methods involved in performing SPR assays as well as in data processing and evaluation using some examples of dengue proteins.
Collapse
Affiliation(s)
- Yin Hoe Yau
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
19
|
Pierzchalski A, Hebeisen M, Mittag A, Bocsi J, Di Berardino M, Tarnok A. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer. LAB ON A CHIP 2012; 12:4533-4543. [PMID: 22907524 DOI: 10.1039/c2lc40408g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.
Collapse
|
20
|
Mehand MS, Srinivasan B, De Crescenzo G. Estimation of analyte concentration by surface plasmon resonance-based biosensing using parameter identification techniques. Anal Biochem 2011; 419:140-4. [PMID: 21945965 DOI: 10.1016/j.ab.2011.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
Surface plasmon resonance-based biosensors have been applied to the determination of macromolecule concentration. Up to now, the proposed experimental approaches have relied either on the generation of a calibration curve that exploits only a few data points from each sensorgram or on multiple injections of the unknown sample at various flow rates. In this article, we show that prior knowledge of the kinetic parameters related to the interaction of the species with a given partner could advantageously reduce the number of injections required by both aforementioned methods, thereby reducing experimental time while maintaining a good level of confidence on the determined concentrations.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C 3A7
| | | | | |
Collapse
|
21
|
Ertürk G, Uzun L, Tümer MA, Say R, Denizli A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron 2011; 28:97-104. [DOI: 10.1016/j.bios.2011.07.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 07/04/2011] [Indexed: 11/25/2022]
|
22
|
Munoz EM, Lorenzo-Abalde S, González-Fernández A, Quintela O, Lopez-Rivadulla M, Riguera R. Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite. Biosens Bioelectron 2011; 26:4423-8. [PMID: 21664118 DOI: 10.1016/j.bios.2011.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 12/25/2022]
Abstract
In this paper the development of the first direct surface plasmon resonance (SPR) immunoassay for the detection of benzoylecgonine (BZE) is described. Immunosensor chips consisting of a high affinity monoclonal anti-BZE-antibody (anti-BZE-Ab) immobilized at high density to a sensor chip were prepared. First, BZE detection in Hepes buffer was achieved by direct, real time monitoring of the binding between BZE in solution and the surface bound antibody. The detection protocol was based on calibration curves obtained from reaction rate data and end point data analysis of sensorgrams registered after injection of a series of known BZE concentrations over the chips. Moreover, immunosensor accuracy, reproducibility, stability and robustness were tested to demonstrate their good performance as reusable devices. The immunosensor was used for BZE detection in oral fluid (OF) showing that, within 180 s, our immunoassay detects BZE concentrations as low as 4 μg/L in filtered OF-buffer (1:4) samples. This value is remarkably lower than current cut off levels established by the Substance Abuse and Mental Health Services Administration. These results manifest the potential use of this direct SPR immunoassay for the in situ sensitive detection of recent cocaine abuse, of utility in roadside drug OF testing. Moreover, it exemplifies the high potential of direct SPR immunoassays for the rapid, sensitive detection of small molecules in contrast with the more established indirect methods.
Collapse
Affiliation(s)
- Eva M Munoz
- Department of Organic Chemistry and Centre for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Av de las Ciencias, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
24
|
Biopharmaceutical production: Applications of surface plasmon resonance biosensors. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:149-53. [DOI: 10.1016/j.jchromb.2009.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 02/07/2023]
|
25
|
Development of biosensor-based SPR technology for biological quantification and quality control of pharmaceutical proteins. J Pharm Biomed Anal 2009; 50:1026-9. [DOI: 10.1016/j.jpba.2009.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/27/2009] [Accepted: 05/27/2009] [Indexed: 11/22/2022]
|
26
|
Uzun L, Say R, Unal S, Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron 2009; 24:2878-84. [PMID: 19303282 DOI: 10.1016/j.bios.2009.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/18/2009] [Indexed: 02/06/2023]
Abstract
Hepatitis B surface antibody (HBsAb) imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) (PHEMAT) film on the surface plasmon resonance (SPR) sensor chip was prepared for diagnosis of HBsAb in human serum. Gold SPR chip surface was modified with allyl mercaptane and, then, HBsAb-imprinted PHEMAT film was formed on the chip surface. Surface characterization of the non-modified, allyl mercaptane modified and HBsAb-imprinted PHEMAT SPR chips were investigated with contact angle, atomic force microscopy (AFM). Kinetic studies were performed using HBsAb positive human serum. In order to determine the kinetic and binding constants, Scatchard, Langmuir, Freundlich and Langmuir-Freundlich models were applied to experimental data. Scatchard curve shows that HBsAb imprinted SPR chip has some surface heterogeneity, SPR chip obeyed the Langmuir adsorption model. The maximum detection limit was 208.2 mIU/mL. K(A) and K(D) values are 0.015 mIU/mL and 66.0 mL/mIU, respectively. Control experiments of the SPR chip were performed using non-immunized, HBsAb negative serum. The control experiment results show that SPR chip does not give any noticeable response to HBsAb negative serum.
Collapse
Affiliation(s)
- Lokman Uzun
- Department of Chemistry, Biochemistry Division, Hacettepe University, Beytepe, 06532 Ankara, Turkey
| | | | | | | |
Collapse
|
27
|
De Crescenzo G, Boucher C, Durocher Y, Jolicoeur M. Kinetic Characterization by Surface Plasmon Resonance-Based Biosensors: Principle and Emerging Trends. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0035-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|