1
|
Goto A, Yamamoto S, Iwasaki S. Biodistribution and delivery of oligonucleotide therapeutics to the central nervous system: Advances, challenges, and future perspectives. Biopharm Drug Dispos 2023; 44:26-47. [PMID: 36336817 DOI: 10.1002/bdd.2338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Considerable advances have been made in the research and development of oligonucleotide therapeutics (OTs) for treating central nervous system (CNS) diseases, such as psychiatric and neurodegenerative disorders, because of their promising mode of action. However, due to the tight barrier function and complex physiological structure of the CNS, the efficient delivery of OTs to target the brain has been a major challenge, and intensive efforts have been made to overcome this limitation. In this review, we summarize the representative methodologies and current knowledge of biodistribution, along with the pharmacokinetic/pharmacodynamic (PK/PD) relationship of OTs in the CNS, which are critical elements for the successful development of OTs for CNS diseases. First, quantitative bioanalysis methods and imaging-based approaches for the evaluation of OT biodistribution are summarized. Next, information available on the biodistribution profile, distribution pathways, quantitative PK/PD modeling, and simulation of OTs following intrathecal or intracerebroventricular administration are reviewed. Finally, the latest knowledge on the drug delivery systems to the brain via intranasal or systemic administration as noninvasive routes for improved patient quality of life is reviewed. The aim of this review is to enrich research on the successful development of OTs by clarifying OT distribution profiles and pathways to the target brain regions or cells, and by identifying points that need further investigation for a mechanistic approach to generate efficient OTs.
Collapse
Affiliation(s)
- Akihiko Goto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
2
|
Tai W, Li J, Corey E, Gao X. A ribonucleoprotein octamer for targeted siRNA delivery. Nat Biomed Eng 2018; 2:326-337. [PMID: 30936447 PMCID: PMC6136846 DOI: 10.1038/s41551-018-0214-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
Hurdles in cell-specific delivery of small interfering RNA (siRNA) in vivo hinder the clinical translation of RNA interference (RNAi). A fundamental problem concerns conflicting requirements for the design of the delivery vehicles: cationic materials facilitate cargo condensation and endosomolysis, yet hinder in vivo targeting and colloidal stability. Here, we describe a self-assembled, compact (~30 nm) and biocompatible ribonucleoprotein-octamer nanoparticle that achieves endosomal destabilization and targeted delivery. The protein octamer consists of a poly(ethylene glycol) scaffold, a sterically masked endosomolytic peptide and a double-stranded RNA-binding domain, providing a discrete number of siRNA loading sites and a high siRNA payload (>30 wt%), and offering flexibility in both siRNA and targeting-ligand selection. We show that a ribonucleoprotein octamer against the polo-like kinase 1 gene and bearing a ligand that binds to prostate-specific membrane antigen leads to efficient gene silencing in prostate tumour cells in vitro and when intravenously injected in mouse models of prostate cancer. The octamer's versatile nanocarrier design should offer opportunities for the clinical translation of therapies based on intracellularly acting biologics.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Junwei Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Nahar S, Kotikam V, Kumar VA, Maiti S. Inhibition of miR-21 by 3'/5'-Serinyl-Capped 2'-O-Methyl RNA Interspersed with 2'-O-(2-Amino-3-Methoxypropyl) Uridine Units. Nucleic Acid Ther 2016; 26:327-334. [PMID: 27454558 DOI: 10.1089/nat.2015.0591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
miRNAs are highly conserved class of small ncRNAs whose involvement in human pathophysiologies is extensively investigated. MiR-21 is a well established oncogenic miRNA whose deregulation plays a significant role in onset and progression of cancer. The need of novel approaches to downregulate miR-21 is rapidly expanding. Potent inhibition of miR-21 is achieved by chemically modified 2'-O-methyl RNA oligonucleotide. The serinol capping at 3' and 5'ends and the interspersed 2'-O-(R-2-amino-3-methoxypropyl) uridine units enhance the nuclease resistance and efficacy of 2'-O-methyl RNA for the inhibition of miR-21. This represents a simple and novel modification for developing oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Smita Nahar
- 1 Academy of Scientific and Innovative Research (AcSIR) , New Delhi, India .,2 CSIR-Institute of Genomics and Integrative Biology , Delhi, India
| | - Venubabu Kotikam
- 3 Department of Chemistry, Binghamton University, State University of New York , Binghamton, New York
| | - Vaijayanti A Kumar
- 4 Organic Chemistry Division, CSIR-National Chemical Laboratory , Pune, India
| | - Souvik Maiti
- 1 Academy of Scientific and Innovative Research (AcSIR) , New Delhi, India .,2 CSIR-Institute of Genomics and Integrative Biology , Delhi, India .,4 Organic Chemistry Division, CSIR-National Chemical Laboratory , Pune, India
| |
Collapse
|
4
|
Yadav S, Gandham SK, Panicucci R, Amiji MM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:987-1002. [PMID: 26767514 PMCID: PMC4837036 DOI: 10.1016/j.nano.2015.12.374] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022]
Abstract
Neuroinflammation is a hallmark of acute and chronic neurodegenerative disorders. The main aim of this study was to evaluate the therapeutic efficacy of intranasal cationic nanoemulsion encapsulating an anti-TNFα siRNA, for potential anti-inflammatory therapy. TNFα siRNA nanoemulsions were prepared and characterized for particle size, surface charge, morphology, and stability and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed higher uptake compared to Lipofectamine® transfected siRNA. Nanoemulsion significantly lowered TNFα levels in LPS-stimulated cells. Upon intranasal delivery of cationic nanoemulsions almost 5 fold higher uptake was observed in the rat brain compared to non-encapsulated siRNA. More importantly, intranasal delivery of TNFα siRNA nanoemulsions in vivo markedly reduced the unregulated levels of TNFα in an LPS-induced model of neuroinflammation. These results indicate that intranasal delivery of cationic nanoemulsions encapsulating TNFα siRNA offered an efficient means of gene knockdown and this approach has significant potential in prevention of neuroinflammation. FROM THE CLINICAL EDITOR Neuroinflammation is often seen in patients with neurodegenerative disorders and tumor necrosis factor-alpha (TNFα) plays a significant role in contributing to neuronal dysfunction. As a result, inhibition of TNFα may alleviate disease severity. In this article, the authors investigated using a cationic nanoemulsion system carrying TNFα siRNA intra-nasally to protect against neuroinflammation. This new method may provide a future approach in this clinical setting.
Collapse
Affiliation(s)
- Sunita Yadav
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA USA; Novartis Institute of Biomedical Research, Cambridge, MA USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA USA.
| |
Collapse
|
5
|
Advances in quantitative bioanalysis of oligonucleotide biomarkers and therapeutics. Bioanalysis 2015; 8:143-55. [PMID: 26652713 DOI: 10.4155/bio.15.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Technical advances and demands for high-throughput accurate quantification of oligonucleotide therapeutics and biomarkers in pharmaceutical research and clinical diagnosis have aided evolution in quantitative bioanalysis of oligonucleotides. Many bioanalytical methods are available for absolute quantification of oligonucleotides in biological matrices. They can be broadly classified into two categories: hybridization-based assays commonly used by molecular biologists and chromatographic assays routinely used by chemists. Each category has its own advantages and disadvantages for specific applications. This review summarizes the mechanisms and applications of some of the current most commonly used techniques in each category.
Collapse
|
6
|
Preliminary investigation into the use of a real-time PCR method for the quantification of an oligonucleotide in human plasma and the development of novel acceptance criteria. Bioanalysis 2014; 6:127-36. [PMID: 24423591 DOI: 10.4155/bio.13.284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The aim of the work was to evaluate the sensitivity and reproducibility of real-time reverse transcriptase PCR for quantitative analysis of an oligonucleotide in a biological matrix. A novel approach for the identification of outliers when assessing the suitability of calibration standards and QC samples is investigated. RESULTS A suitable assay was established for the determination of the oligonucleotide in human plasma over a range of 0.5-100 ng/ml. CONCLUSION In these preliminary investigations, the precision and accuracy of the method was established for the quantification of the oligonucleotide in human plasma. It was established that the method was precise and accurate for quantification of the oligonucleotide in human plasma. The acceptability of the data was assessed using a novel three-step process to identify any outliers, involving the use of the Grubbs' test. The analytical method only requires a small sample volume (<0.01 ml), so would be applicable in analysis of low-volume samples.
Collapse
|
7
|
Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opin Drug Deliv 2014; 11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Kelnar K, Peltier HJ, Leatherbury N, Stoudemire J, Bader AG. Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. Anal Chem 2014; 86:1534-42. [PMID: 24397447 PMCID: PMC3982984 DOI: 10.1021/ac403044t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MRX34, a microRNA (miRNA)-based therapy for cancer, has recently entered clinical trials as the first clinical candidate in its class. It is a liposomal nanoparticle loaded with a synthetic mimic of the tumor suppressor miRNA miR-34a as the active pharmaceutical ingredient. To understand the pharmacokinetic properties of the drug and to rationalize an optimal dosing regimen in the clinic, a method is needed to quantitatively detect the miRNA mimic. Here, we report the development and qualification of a quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay in support of pharmacokinetic and toxicokinetic assessments in the nonhuman primate. Detection and quantification were performed on total ribonucleic acid (RNA) isolated from whole blood. The qualified range of the standard curve spans 6 orders of magnitude from 2.5 × 10(-7) to 2.5 × 10(-1) ng per reverse transcription (RT) reaction, corresponding to an estimated blood concentration from 6.2 × 10(-5) to 6.2 × 10(1) ng/mL. Our results demonstrate that endogenous as well as the exogenous miR-34a can be accurately and precisely quantified. The assay was used to establish the pharmacokinetic profile of MRX34, showing a favorable residence time and exposure of the miRNA mimic in whole blood from nonhuman primates.
Collapse
Affiliation(s)
- Kevin Kelnar
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, Texas 78701, United States
| | | | | | | | | |
Collapse
|
9
|
Regulated bioanalysis of oligonucleotide therapeutics and biomarkers: qPCR versus chromatographic assays. Bioanalysis 2013; 5:2747-51. [DOI: 10.4155/bio.13.234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Ganesh S, Iyer AK, Gattacceca F, Morrissey DV, Amiji MM. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Control Release 2013; 172:699-706. [PMID: 24161254 DOI: 10.1016/j.jconrel.2013.10.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
Multidrug resistance (MDR) is a significant problem in the clinical management of several cancers. Overcoming MDR generally involves multi-modal therapeutic approaches that integrate enhancement of delivery efficiency using targeted nano-platforms as well as strategies that can sensitize cancer cells to drug treatments. We recently demonstrated that tandem delivery of siRNAs that downregulate anti-apoptotic genes overexpressed in cisplatin resistant tumors followed by therapeutic challenge using cisplatin loaded CD44 targeted hyaluronic acid (HA) nanoparticle (NP) induced synergistic antitumor response CD44 expressing tumors that are resistant to cisplatin. In the current study, a near infrared (NIR) dye-loaded HA NP was employed to image the whole body localization of NPs after intravenous (i.v.) injection into live mice bearing human lung tumors that were sensitive and resistant to cisplatin. In addition, we quantified the siRNA duplexes and cisplatin dose distribution in various tissues and organs using an ultra-sensitive quantitative PCR method and inductively coupled plasma-mass spectrometry (ICP-MS), respectively, after i.v. injection of the payload loaded HA NPs in tumor bearing mice. Our findings demonstrate that the distribution pattern of the siRNA and cisplatin using specifically engineered CD44 targeting HA NPs correlated well with the tumor targeting capability as well as the activity and efficacy obtained with combination treatments.
Collapse
Affiliation(s)
- Shanthi Ganesh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston 02115, USA; Novartis Institutes for Biomedical Research Inc., Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
11
|
Boos JA, Kirk DW, Piccolotto ML, Zuercher W, Gfeller S, Neuner P, Dattler A, Wishart WL, Von Arx F, Beverly M, Christensen J, Litherland K, van de Kerkhof E, Swart PJ, Faller T, Beyerbach A, Morrissey D, Hunziker J, Beuvink I. Whole-body scanning PCR; a highly sensitive method to study the biodistribution of mRNAs, noncoding RNAs and therapeutic oligonucleotides. Nucleic Acids Res 2013; 41:e145. [PMID: 23766292 PMCID: PMC3753639 DOI: 10.1093/nar/gkt515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Efficient tissue-specific delivery is a crucial factor in the successful development of therapeutic oligonucleotides. Screening for novel delivery methods with unique tissue-homing properties requires a rapid, sensitive, flexible and unbiased technique able to visualize the in vivo biodistribution of these oligonucleotides. Here, we present whole body scanning PCR, a platform that relies on the local extraction of tissues from a mouse whole body section followed by the conversion of target-specific qPCR signals into an image. This platform was designed to be compatible with a novel RT-qPCR assay for the detection of siRNAs and with an assay suitable for the detection of heavily chemically modified oligonucleotides, which we termed Chemical-Ligation qPCR (CL-qPCR). In addition to this, the platform can also be used to investigate the global expression of endogenous mRNAs and non-coding RNAs. Incorporation of other detection systems, such as aptamers, could even further expand the use of this technology.
Collapse
Affiliation(s)
- Julien A Boos
- Novartis Institutes for Biomedical Research (NIBR), Novartis Pharma AG, Basel, Basel-Stadt CH-4056, Switzerland and NIBR, Novartis Pharma AG, Cambridge, Massachusetts, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shi B, Abrams M. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J Histochem Cytochem 2013; 61:407-20. [PMID: 23504369 PMCID: PMC3715328 DOI: 10.1369/0022155413484152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 11/22/2022] Open
Abstract
Small interfering RNA (siRNA) therapeutics have advanced from bench to clinical trials in recent years, along with new tools developed to enable detection of siRNA delivered at the organ, cell, and subcellular levels. Preclinical models of siRNA delivery have benefitted from methodologies such as stem-loop quantitative polymerase chain reaction, histological in situ immunofluorescent staining, endosomal escape assay, and RNA-induced silencing complex loading assay. These technologies have accelerated the detection and optimization of siRNA platforms to overcome the challenges associated with delivering therapeutic oligonucleotides to the cytosol of specific target cells. This review focuses on the methodologies and their application in the biodistribution of siRNA delivered by lipid nanoparticles.
Collapse
Affiliation(s)
- Bin Shi
- Department of RNA Therapeutics, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, USA.
| | | |
Collapse
|
13
|
Colombo S, Nielsen HM, Foged C. Evaluation of carrier-mediated siRNA delivery: Lessons for the design of a stem-loop qPCR-based approach for quantification of intracellular full-length siRNA. J Control Release 2013; 166:220-6. [DOI: 10.1016/j.jconrel.2013.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 11/26/2022]
|
14
|
Real-time quantification of antibody–short interfering RNA conjugate in serum by antigen capture reverse transcription–polymerase chain reaction. Anal Biochem 2012; 430:171-8. [DOI: 10.1016/j.ab.2012.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 11/15/2022]
|
15
|
Beverly MB. Applications of mass spectrometry to the study of siRNA. MASS SPECTROMETRY REVIEWS 2011; 30:979-998. [PMID: 20201110 DOI: 10.1002/mas.20260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has quickly become a well-established laboratory tool for regulating gene expression and is currently being explored for its therapeutic potential. The design and use of double-stranded RNA oligonucleotides as therapeutics to trigger the RNAi mechanism and a greater effort to understand the RNAi pathway itself is driving the development of analytical techniques that can characterize these oligonucleotides. Electrospray (ESI) and MALDI have been used routinely to analyze oligonucleotides and their ability to provide mass and sequence information has made them ideal for this application. Reviewed here is the work done to date on the use of ESI and MALDI for the study of RNAi oligonucleotides as well as the strategies and issues associated with siRNA analysis by mass spectrometry. While there is not a large body of literature on the specific application of mass spectrometry to RNAi, the work done in this area is a good demonstration of the range of experiments that can be conducted and the value that ESI and MALDI can provide to the RNAi field.
Collapse
Affiliation(s)
- Michael B Beverly
- RNA Therapeutics Department, Merck and Co., Inc., Boulder, CO 80301, USA.
| |
Collapse
|
16
|
Abstract
Therapeutic oligonucleotides (OGNTs) are important biopharmaceutical drugs for the future, due to their ability to selectively reduce or knockout the expression of target genes. For the development of OGNTs, reliable and relatively high-throughput bioanalytical methods are required to perform the quantitative bioanalysis of OGNTs and their metabolites in biological fluids (e.g., plasma, urine and tissue). Although immunoaffinity methods, especially ELISA, are currently widely applied for this purpose, the potential of LC-MS in OGNT analysis is under investigation. Owing to its inherent ability to monitor the individual target OGNTs as well as their metabolites, LC-MS is now evolving into the method-of-choice for the bioanalysis of OGNTs. In this paper, the state-of-the-art of bioanalytical LC-MS of OGNTs and their metabolites in biological fluids is critically reviewed and its advantages and limitations highlighted. Finally, the future perspective of bioanalytical LC-MS, that is, lower detection levels and potential generic LC-MS methodology, is discussed.
Collapse
|
17
|
Effect of biological matrix and sample preparation on qPCR quantitation of siRNA drugs in animal tissues. J Pharmacol Toxicol Methods 2011; 63:168-73. [DOI: 10.1016/j.vascn.2010.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|
18
|
Wang Z, Pacchione SJ, Niu Z, Troilo PJ, Griffiths TG, Striano KL, Lebron JA, Wolf JJ. A multi-species assay for siRNA-mediated mRNA knockdown analysis without the need for RNA purification. J Pharmacol Toxicol Methods 2011; 63:174-9. [DOI: 10.1016/j.vascn.2010.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/18/2010] [Indexed: 12/01/2022]
|
19
|
Abstract
RNA interference (RNAi) is a regulatory mechanism of eukaryotic cells that uses small interfering RNAs (siRNA) to direct homology-dependent control of gene activity. Applications of RNAi include functional genomics, in vivo target validation, and gene-specific medicines. A key to in vivo application of siRNA is the advancement of efficient delivery to organs, tissues, or cell types of interest. There is a need to develop reliable and easy-to-use assays to evaluate siRNA delivery efficiency and distribution, study pathways, and stability of siRNAs in cells (post-transfection) and in animals (post- injection). We have adopted the Applied Biosystems TaqMan(®) based stem-loop RT-PCR technology, originally developed for quantification of endogenous microRNAs in cells, to fulfill these needs. In this chapter, application protocols are described, which enable robust quantification of siRNA, including chemically modified molecules, in vitro and in vivo.
Collapse
Affiliation(s)
- Angie Cheng
- Molecular and Cell Biology Division, Life Technologies, Austin, TX, USA.
| | | | | |
Collapse
|
20
|
Pei Y, Hancock PJ, Zhang H, Bartz R, Cherrin C, Innocent N, Pomerantz CJ, Seitzer J, Koser ML, Abrams MT, Xu Y, Kuklin NA, Burke PA, Sachs AB, Sepp-Lorenzino L, Barnett SF. Quantitative evaluation of siRNA delivery in vivo. RNA (NEW YORK, N.Y.) 2010; 16:2553-63. [PMID: 20940339 PMCID: PMC2995415 DOI: 10.1261/rna.2255810] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/30/2010] [Indexed: 05/22/2023]
Abstract
Effective small interfering RNA (siRNA)-mediated therapeutics require the siRNA to be delivered into the cellular RNA-induced silencing complex (RISC). Quantitative information of this essential delivery step is currently inferred from the efficacy of gene silencing and siRNA uptake in the tissue. Here we report an approach to directly quantify siRNA in the RISC in rodents and monkey. This is achieved by specific immunoprecipitation of the RISC from tissue lysates and quantification of small RNAs in the immunoprecipitates by stem-loop PCR. The method, expected to be independent of delivery vehicle and target, is label-free, and the throughput is acceptable for preclinical animal studies. We characterized a lipid-formulated siRNA by integrating these approaches and obtained a quantitative perspective on siRNA tissue accumulation, RISC loading, and gene silencing. The described methodologies have utility for the study of silencing mechanism, the development of siRNA therapeutics, and clinical trial design.
Collapse
Affiliation(s)
- Yi Pei
- Department of RNA Therapeutics, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Landesman Y, Svrzikapa N, Cognetta A, Zhang X, Bettencourt BR, Kuchimanchi S, Dufault K, Shaikh S, Gioia M, Akinc A, Hutabarat R, Meyers R. In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR). SILENCE 2010; 1:16. [PMID: 20731861 PMCID: PMC2939650 DOI: 10.1186/1758-907x-1-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/23/2010] [Indexed: 02/04/2023]
Abstract
Background While increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery. Results Here, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue. The broad dynamic range of this assay spans five orders of magnitude and can detect as little as 70 pg duplex in 1 g of liver or in 1 ml of plasma. We have used this assay to quantify intravenously administrated siRNA in rodents and have reliably correlated target reduction with tissue drug concentrations. We were able to detect siRNA in rat liver for at least 10 days post injection and determined that for a modified factor VII (FVII) siRNA, on average, approximately 500 siRNA molecules per cell are required to achieve a 50% target reduction. Conclusions HIT qRT-PCR is a novel approach that simplifies the in vivo quantification of siRNA and provides a highly sensitive and reproducible tool to measure the silencing efficiency of chemically modified and formulated siRNAs.
Collapse
|
22
|
Cheng A, Li M, Liang Y, Wang Y, Wong L, Chen C, Vlassov AV, Magdaleno S. Stem-loop RT-PCR quantification of siRNAs in vitro and in vivo. Oligonucleotides 2009; 19:203-8. [PMID: 19284311 DOI: 10.1089/oli.2008.0176] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RNA interference (RNAi) is a mechanism in which the introduction of small interfering RNAs (siRNAs) into a diverse range of organisms and cell types causes degradation of the complementary mRNA. Applications of RNAi include gene function and pathway analysis, target identification and validation, and therapeutics. There is a need to develop reliable and easy-to-use assays to evaluate siRNA delivery efficiency and distribution, study pathways, and stability of siRNAs in cells (posttransfection) and in animals (postinjection). We have leveraged the Applied Biosystems TaqMan-based stem-loop RT-PCR technology, originally developed for quantification of endogenous microRNAs in cells, to fulfill these needs. The application protocols developed enable robust quantification of siRNA, including chemically modified siRNA molecules, in vitro and in vivo.
Collapse
|
23
|
Gao S, Dagnaes-Hansen F, Nielsen EJB, Wengel J, Besenbacher F, Howard KA, Kjems J. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 2009; 17:1225-33. [PMID: 19401674 DOI: 10.1038/mt.2009.91] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Instability and inadequate biodistribution of double-stranded RNA are major drawbacks to the clinical use of RNA interference. This work compares chemical modification and nanoparticle formulation as strategies to improve the systemic delivery of small interfering RNA (siRNA). Variable levels of chemical modified siRNA, either naked or within nanoparticle, were intravenously injected into mice to study temporal stability and biodistribution detected by direct radioactive labeling or by northern blotting. Naked siRNA showed rapid renal clearance, with circulatory half-life of <5 minutes that could be extended to >30 minutes by cholesterol conjugation. The integrity of the chemically stabilized siRNA was maintained in blood for at least 30 minutes, whereas, unmodified siRNA duplex was degraded within 1 minute. Intact chemically modified siRNA could also be detected in all analyzed organs at 30 minutes but disappeared at 24 hours, except for heavy locked nucleic acid (LNA)-modified and cholesterol-conjugated siRNA in the lungs. Chitosan, liposomal, or JetPEI formulation greatly improved the stability and biodistribution of siRNA. Interestingly, high siRNA accumulation of the chitosan/siRNA formulation within the kidney was observed 24 hours postadministration. This comparative study highlights improvements to siRNA stability and pharmacokinetics, key determinants for development of clinically relevant RNAi therapeutics.
Collapse
Affiliation(s)
- Shan Gao
- Department of Molecular Biology, University of Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
24
|
Evaluation of pharmacokinetics of bioreducible gene delivery vectors by real-time PCR. Pharm Res 2009; 26:1581-9. [PMID: 19240986 DOI: 10.1007/s11095-009-9847-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate pharmacokinetics of reversibly stabilized DNA nanoparticles (rSDN) using a single-step lysis RT-PCR. METHODS rSDN were prepared by coating bioreducible polycation/DNA polyplexes with multivalent N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. Targeted polyplexes were formulated by linking cyclic RGD ligand (c(RGDyK)) to the HPMA surface layer of rSDN. The pharmacokinetic parameters in tumor-bearing mice were analyzed by PKAnalyst. RESULTS The pharmacokinetics of naked plasmid DNA, simple DNA polyplexes, rSDN, and RGD-targeted rSDN exhibited two-compartment model characteristics with area under the blood concentration-time curve (AUC) increasing from 1,102 ng x ml(-1) x min(-1) for DNA to 3,501 ng x ml(-1) x min(-1) for rSDN. Non-compartment model analysis revealed increase in mean retention time (MRT) from 4.5 min for naked DNA to 22.9 min for rSDN. CONCLUSIONS RT-PCR is a sensitive and convenient method suitable for analyzing pharmacokinetics and biodistribution of DNA polyplexes. Surface stabilization of DNA polyplexes can significantly extend their MRT and AUC compared to naked DNA. DNA degradation in rSDN in blood circulation, due to a combined effect of disulfide reduction and competitive reactions with charged molecules in the blood, contributes to DNA elimination.
Collapse
|
25
|
Liu WL, Stevenson M, Seymour LW, Fisher KD. Quantification of siRNA using competitive qPCR. Nucleic Acids Res 2008; 37:e4. [PMID: 19004870 PMCID: PMC2615599 DOI: 10.1093/nar/gkn903] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a PCR-based short interfering RNA (siRNA) quantification method based on competition between siRNA and a homologous DNA primer for annealing to template DNA, avoiding the requirement for prior conversion of RNA to cDNA. Primers and probe were designed to amplify regions of the human papillomavirus E6 or enhanced green fluorescent protein genes. Having confirmed siRNA could not act as primer for amplicon generation, the lowest competing primer concentration yielding a linear relationship between template DNA amount (0.1–50 ng) and cycle of threshold (Ct) was determined (6.25 nM). Under these conditions addition of sequence-specific siRNA to the competitive quantitative PCR (cqPCR), resulted in a dose-dependent linear increase in Ct value. 2′-O-methyl ribose-modified siRNA retained an ability to inhibit template amplification in serum, unlike unmodified siRNAs that were susceptible to endonucleases. Mismatch-bearing or truncated siRNAs failed to inhibit template amplification confirming sequence specificity and an ability to discriminate between degraded and non-degraded siRNA sequences. Following delivery of E6 siRNA to C33-A cells using oligofectamine or His6 reducible polymers, siRNA uptake was quantified by cqPCR, revealing dose-dependent uptake. We anticipate that cqPCR will allow accurate determination of siRNA pharmacokinetics following in vivo delivery, greatly facilitating development of therapeutic siRNA delivery strategies.
Collapse
Affiliation(s)
- Wei-li Liu
- Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, UK
| | | | | | | |
Collapse
|