1
|
Sreenivasan S, Patil SS, Rathore AS. Does Aggregation of Therapeutic IgGs in PBS Offer a True Picture of What Happens in Models Derived from Human Body Fluids? J Pharm Sci 2024; 113:596-603. [PMID: 37717637 DOI: 10.1016/j.xphs.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Therapeutic proteins such as monoclonal antibodies (mAb) are known to form aggregates due to various factors. Phosphate buffered saline (PBS), human serum, and human serum filtrate (HSF) are some of the models used to analyze mAb stability in physiologically relevant in-vitro conditions. In this study, aggregation of mAb in PBS and models derived from body fluids seeded with mAb samples subjected to various stresses were compared. Samples containing mAb subjected to pH, temperature, UV light, stirring, and interfacial agitation stress were seeded into different models for 2 case studies. In the first case study, %HMW (high molecular weight species) of mAb in PBS and HSF were compared using size exclusion chromatography. It was found that change in %HMW was higher in PBS compared to HSF. For example, PBS containing mAb that was subjected to UV light stress showed change in HMW by >10 % over 72 h, but the change was <5 % in HSF. In second case study, aggregates particles of FITC tagged mAb were monitored in PBS and serum using fluorescence microscope image processing. It was found that PBS and serum containing mAb subjected to stirring and interfacial agitation resulted in aggregates of >2 µm size, and average size and percentage number of particles having >10 µm size was higher in serum compared to PBS at all analysis time point. Overall, it was found that aggregation of mAb in PBS was different from that in human body fluids. Second case study also showed the importance of advanced strategies for further characterization of mAb in serum.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Sanjeet S Patil
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India.
| |
Collapse
|
2
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
3
|
Zhao Z, Deng Y, Xiang L, Chen J, Wan J, Sun J, Kong Y, Hua Q. The ratio of total IgE level at week 16 to baseline significantly correlated with the clinical response to omalizumab in moderate to severe allergic rhinitis patients. Int Immunopharmacol 2023; 122:110623. [PMID: 37441810 DOI: 10.1016/j.intimp.2023.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE To analyze whether the ratio of total IgE level at week 16 to baseline could be used as an indicator to evaluate clinical efficacy of patients treated with omalizumab. METHODS We retrospectively analyzed the clinical characteristics of 62 patients with moderate-to-severe allergic rhinitis treated with omalizumab, and compared the pre-and post-treatment nasal visual analog scale (n-VAS) scores, the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ), Rhinitis Control Assessment Test (RCAT), improvement in nasal congestion, number of acute episodes of rhinitis, and total IgE levels in serum. The relationship between the efficacy of treatment with omalizumab and the change in total IgE levels before and after treatment was further analyzed. RESULTS This study included 62 patients with moderate-to-severe allergic rhinitis, of which 48 demonstrated significant improvement after 16 weeks of omalizumab therapy; the results of 16 weeks' omalizumab treatment in 14 patients did not show significant improvements in allergic rhinitis symptoms based on RACT scores. After 16 weeks of omalizumab treatment, the RQLQ score decreased from (36.6 ± 13.7) at baseline level to (9.1 ± 12.6) after 16 weeks treatment.The ratio of total IgE at week 16 to total IgE levels at baseline was (2.9 ± 1.4) KU/L in 62 patients. And the ratio of total IgE levels at week 16 to total IgE levels at baseline was (3.3 ± 1.4) KU/L for responders and (1.6 ± 0.5) KU/L for non-responders. CONCLUSION The ratio of total IgE level at week 16 to baseline significantly correlated with the clinical response to omalizumab in moderate to severe allergic rhinitis patients, when the ratio of total IgE level at week 16 to baseline was ≥2.0. Omalizumab effectively treated patients with moderate-to-severe allergic rhinitis, and improved their quality of life.
Collapse
Affiliation(s)
- Zhan Zhao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lei Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jing Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jinli Sun
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yonggang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
4
|
Watkin SAJ, Bennie RZ, Gilkes JM, Nock VM, Pearce FG, Dobson RCJ. On the utility of microfluidic systems to study protein interactions: advantages, challenges, and applications. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:459-471. [PMID: 36583735 PMCID: PMC9801160 DOI: 10.1007/s00249-022-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel Z Bennie
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jenna M Gilkes
- Protein Science and Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Correia JJ, Bishop GR, Kyle PB, Wright RT, Sherwood PJ, Stafford WF. Sedimentation velocity FDS studies of antibodies in pooled human serum. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:321-332. [PMID: 37160443 DOI: 10.1007/s00249-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
The biotech industry has great interest in investigating therapeutic proteins in high concentration environments like human serum. The fluorescence detection system (Aviv-FDS) allows the performance of analytical ultracentrifuge (AUC) sedimentation velocity (SV) experiments in tracer or BOLTS protocols. Here, we compare six pooled human serum samples by AUC SV techniques and demonstrate the potential of this technology for characterizing therapeutic antibodies in serum. Control FDS SV experiments on serum alone reveal a bilirubin-HSA complex whose sedimentation is slowed by solution nonideality and exhibits a Johnston-Ogston (JO) effect due to the presence of high concentrations of IgG. Absorbance SV experiments on diluted serum samples verify the HSA-IgG composition as well as a significant IgM pentamer boundary at 19 s. Alexa-488 labeled Simponi (Golimumab) is used as a tracer to investigate the behavior of a therapeutic monoclonal antibody (mAb) in serum, and the sedimentation behavior of total IgG in serum. Serum dilution experiments allow extrapolation to zero concentration to extract so, while global direct boundary fitting with SEDANAL verifies the utility of a matrix of self- and cross-term phenomenological nonideality coefficients (ks and BM1) and the source of the JO effect. The best fits include weak reversible association (~ 4 × 103 M-1) between Simponi and total human IgG. Secondary mAbs to human IgG and IgM verify the formation of a 10.2 s 1:1 complex with human IgG and a 19 s complex with human IgM pentamers. These results demonstrate that FDS AUC allows a range of approaches for investigating therapeutic antibodies in human serum.
Collapse
Affiliation(s)
- J J Correia
- Department of Cell and Molecular Biology, University of Miss Medical Center, Jackson, MS, USA.
| | - G R Bishop
- Department of Pharmacology and Toxicology, University of Miss Medical Center, Jackson, MS, USA
| | - P B Kyle
- Department of Pathology, University of Miss Medical Center, Jackson, MS, USA
| | - R T Wright
- Janssen Research and Development, Spring House, PA, 19477, USA
| | | | - W F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Anaz A, Kadhim N, Sadoon O, Alwan G, Adhab M. Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images. SUSTAINABILITY 2023; 15:3726. [DOI: 10.3390/su15043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and estimation. The current method (visual quantification methods) of image quantification is time-consuming and cumbersome, and manual measurement is imprecise because of the natural differences among human eyes’ abilities. Subsequently, objective outcome evaluation can obviate the drawbacks of the current methods and facilitate recording for documenting function and research purposes. To achieve a fast and valuable objective estimation of fluorescence in each image, an algorithm was designed based on machine vision techniques to extract the targeted objects in images that resulted from confocal images and then estimate the covered area to produce a percentage value similar to the outcome of the current method and is predicted to contribute to sustainable biotechnology image analyses by reducing time and labor consumption. The results show strong evidence that t-designed objective algorithm evaluations can replace the current method of manual and visual quantification methods to the extent that the Intraclass Correlation Coefficient (ICC) is 0.9.
Collapse
Affiliation(s)
- Aws Anaz
- Mechatronics Engineering Department, Engineering College, University of Mosul, Mosul 00964, Iraq
| | - Neamah Kadhim
- College of Science for Women, University of Baghdad, Baghdad 10071, Iraq
| | - Omar Sadoon
- Information Technology Center, University of Technology, Baghdad 10066, Iraq
| | - Ghazwan Alwan
- Mechanical Engineering Department, Engineering College, Tikrit University, Tikrit 34001, Iraq
| | - Mustafa Adhab
- Plant Protection Department, University of Baghdad, Baghdad 10071, Iraq
| |
Collapse
|
7
|
Kuo BS, Li CH, Chen JB, Shiung YY, Chu CY, Lee CH, Liu YJ, Kuo JH, Hsu C, Su HW, Li YF, Lai A, Ho YF, Cheng YN, Huang HX, Lung MC, Wu MS, Yang FH, Lin CH, Tseng W, Yang J, Lin CY, Tsai PH, Chang HK, Wang YJ, Chen T, Lynn S, Liao MJ, Wang CY. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J Clin Invest 2022; 132:157765. [PMID: 35912861 PMCID: PMC9337824 DOI: 10.1172/jci157765] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcԑRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)-knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
Collapse
Affiliation(s)
- Be-Sheng Kuo
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| | | | | | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | - Cindy Hsu
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | - Annie Lai
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chang Yi Wang
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| |
Collapse
|
8
|
Pre-Clinical In-Vitro Studies on Parameters Governing Immune Complex Formation. Pharmaceutics 2022; 14:pharmaceutics14061254. [PMID: 35745826 PMCID: PMC9227392 DOI: 10.3390/pharmaceutics14061254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile—from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.
Collapse
|
9
|
Chaturvedi SK, Parupudi A, Juul-Madsen K, Nguyen A, Vorup-Jensen T, Dragulin-Otto S, Zhao H, Esfandiary R, Schuck P. Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs 2021; 12:1810488. [PMID: 32887536 PMCID: PMC7531506 DOI: 10.1080/19420862.2020.1810488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoclonal antibodies are a class of biotherapeutics used for an increasing variety of disorders, including cancer, autoimmune, neurodegenerative, and viral diseases. Besides their antigen specificity, therapeutic use also mandates control of their solution interactions and colloidal properties in order to achieve a stable, efficacious, non-immunogenic, and low viscosity antibody solution at concentrations in the range of 50–150 mg/mL. This requires characterization of their reversible self-association, aggregation, and weak attractive and repulsive interactions governing macromolecular distance distributions in solution. Simultaneous measurement of these properties, however, has been hampered by solution nonideality. Based on a recently introduced sedimentation velocity method for measuring macromolecular size distributions in a mean-field approximation for hydrodynamic interactions, we demonstrate simultaneous measurement of polydispersity and weak and strong solution interactions in a panel of antibodies with concentrations up to 45 mg/mL. By allowing approximately an order of magnitude higher concentrations than previously possible in sedimentation velocity size distribution analysis, this approach can substantially improve efficiency and sensitivity for characterizing polydispersity and interactions of therapeutic antibodies at or close to formulation conditions.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Kristian Juul-Madsen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Sonia Dragulin-Otto
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Reza Esfandiary
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
10
|
Sreenivasan S, Sonawat D, Mandal S, Khare K, Rathore AS. Novel semi-automated fluorescence microscope imaging algorithm for monitoring IgG aggregates in serum. Sci Rep 2021; 11:11375. [PMID: 34059715 PMCID: PMC8166854 DOI: 10.1038/s41598-021-90623-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Analysis of therapeutic IgG aggregates in serum is a potential area of investigation as it can give deeper insights about the function, immunogenic issues and protein interaction associated with the aggregates. To overcome various complexities associated with the existing analytical techniques for analyzing aggregates in serum, a novel florescence microscopy-based image processing approach was developed. The monoclonal antibody (mAb) was tagged with a fluorescent dye, fluorescein isothiocyanate (FITC). Aggregates, generated by stirring, were spiked into serum and images were captured at various time points. After denoising, thresholding by weighted median, 1D Otsu, and 2D Otsu was attempted and a modified 2D Otsu, a new mode of thresholding, was developed. This thresholding method was found to be highly effective in removing noises and retaining analyte sizes. Out of 0–255, the optimized threshold value obtained for the images discussed in modified 2D Otsu was 9 while 2D Otsu’s overestimated values were 38 and 48. Other morphological operations were applied after thresholding and the area, perimeter, circularity, and radii of the aggregates in these images were calculated. The proposed algorithm offers an approach for analysis of aggregates in serum that is simpler to implement and is complementary to existing approaches.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepak Sonawat
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shyamapada Mandal
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kedar Khare
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
11
|
Schuster J, Mahler HC, Joerg S, Huwyler J, Mathaes R. Analytical Challenges Assessing Protein Aggregation and Fragmentation Under Physiologic Conditions. J Pharm Sci 2021; 110:3103-3110. [PMID: 33933436 DOI: 10.1016/j.xphs.2021.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Therapeutic proteins are administered by injection or infusion. After administration, the physiologic environment in the desired body compartment - fluid or tissue - can impact protein stability and lead to changes in the safety and/or efficacy profile. For example, protein aggregation and fragmentation are critical quality attributes of the drug product and can occur after administration to patients. In this context, the in vivo stability of therapeutic proteins has gained increasing attention. However, in vivo protein aggregation and fragmentation are difficult to assess and have been rarely investigated. This mini-review summarizes analytical approaches to assess the stability of therapeutic proteins using simulated physiologic conditions. Furthermore, we discuss factors potentially causing in vivo protein aggregation, precipitation, and fragmentation in complex biological fluids. Different analytical approaches are evaluated with respect to their applicability and possible shortcomings when it comes to these degradation events in biological fluids. Tracking protein stability in biological fluids typically requires purifying or labeling the protein of interest to circumvent matrix interference of biological fluids. Improved analytical methods are strongly needed to gain knowledge on in vivo protein aggregation and fragmentation. In vitro models can support the selection of lead candidates and accelerate the pre-clinical development of therapeutic proteins.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland; University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | | | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Joerg Huwyler
- University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
12
|
Bondarenko P, Nichols AC, Xiao G, Shi RL, Chan PK, Dillon TM, Garces F, Semin DJ, Ricci MS. Identification of critical chemical modifications and paratope mapping by size exclusion chromatography of stressed antibody-target complexes. MAbs 2021; 13:1887629. [PMID: 33615991 PMCID: PMC7899697 DOI: 10.1080/19420862.2021.1887629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Therapeutic proteins including antibodies and Fc-fusion proteins undergo a large number of chemical modifications during cell culture, purification, storage and in human circulation. They are also exposed to harsh conditions during stress studies, including elevated temperature, extremes of pH, forced oxidation, physiological pH, UV light to assess the possible degradation pathways and suitability of methods for detecting them. Some of these modifications are located on residues in binding regions, leading to loss of binding and potency and classified as critical quality attributes. Currently, criticality of modifications is assessed by a laborious process of collecting antibody fractions from the soft chromatography techniques ion exchange and hydrophobic interaction chromatography and characterizing the fractions one-by-one for potency and chemical modifications. Here, we describe a method for large-scale, parallel identification of all critical chemical modifications in one experiment. In the first step, the antibody is stressed by one or several stress methods. It is then mixed with target protein and separated by size-exclusion chromatography (SEC) on bound antibody-target complex and unbound antibody. Peptide mapping of fractions and statistical analysis are performed to identify modifications on amino acid residues that affect binding. To identify the modifications leading to slight decreases in binding, competitive SEC of antibody and antigen mixtures was developed and described in a companion study by Shi et al, where target protein is provided at lower level, below the stoichiometry. The newly described method was successfully correlated to crystallography for assessing criticality of chemical modifications and paratope mapping. It is more sensitive to low-level modifications, better streamlined and platform ready.
Collapse
Affiliation(s)
- Pavel Bondarenko
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Andrew C Nichols
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Pik Kay Chan
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Fernando Garces
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc , Thousand Oaks, CA, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Margaret S Ricci
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| |
Collapse
|
13
|
Schuster J, Probst CE, Mahler HC, Joerg S, Huwyler J, Mathaes R. Assessing Particle Formation of Biotherapeutics in Biological Fluids. J Pharm Sci 2021; 110:1527-1532. [PMID: 33421437 DOI: 10.1016/j.xphs.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The stability of therapeutic proteins can be impacted in vivo after administration, which may affect patient safety or treatment efficacy, or both. Stability testing of therapeutic proteins using models representing physiologic conditions may guide preclinical development strategy; however, to date only a few studies assessing the physical stability are available in the public domain. In this manuscript, the stability of seven fluorescently labeled monoclonal antibodies (mAbs) was evaluated in human serum and phosphate-buffered saline, two models often discussed to be representative of the situation in humans after intravenous administration. Subvisible particles were analyzed using light obscuration, flow imaging, and imaging flow cytometry. All methods showed that serum itself formed particles under in vitro conditions. Imaging flow cytometry demonstrated that mean particle size and counts of mAbs increased substantially in serum over five days; however, particle formation in phosphate-buffered saline was comparably low. Stability differences were observed across the mAbs evaluated, and imaging flow cytometry data indicated that fluorescently labeled mAbs primarily interacted with serum components. The results indicate that serum may be more suitable as in vitro model to simulate physiologic intravenous conditions in patients closely and evaluate the in vivo stability of therapeutic proteins. Fluorescence labeling and detection methods may be applied to differentiate particles containing therapeutic protein from high amounts of serum particles that form over time.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland; Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | | | | | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Joerg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
14
|
Correia JJ, Wright RT, Sherwood PJ, Stafford WF. Analysis of nonideality: insights from high concentration simulations of sedimentation velocity data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:687-700. [PMID: 33159218 PMCID: PMC7701085 DOI: 10.1007/s00249-020-01474-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
The Aviv fluorescence detection system (Aviv-FDS) has allowed the performance of sedimentation velocity experiments on therapeutic antibodies in highly concentrated environments like formulation buffers and serum. Methods were implemented in the software package SEDANAL for the analysis of nonideal, weakly associating AUC data acquired on therapeutic antibodies and proteins (Wright et al. Eur Biophys J 47:709–722, 2018, Anal Biochem 550:72–83, 2018). This involved fitting both hydrodynamic, ks, and thermodynamic, BM1, nonideality where concentration dependence is expressed as s = so/(1 + ksc) and D = Do(1 + 2BM1c)/(1 + ksc) and so and Do are values extrapolated to c = 0 (mg/ml). To gain insight into the consequences of these phenomenological parameters, we performed simulations with SEDANAL of a monoclonal antibody as a function of ks (0–100 ml/g) and BM1 (0–100 ml/g). This provides a visual understanding of the separate and joint impact of ks and BM1 on the shape of high-concentration sedimentation velocity boundaries and the challenge of their unique determination by finite element methods. In addition, mAbs undergo weak self- and hetero-association (Yang et al. Prot Sci 27:1334–1348, 2018) and thus we have simulated examples of nonideal weak association over a wide range of concentrations (1–120 mg/ml). Here we demonstrate these data are best analyzed by direct boundary global fitting to models that account for ks, BM1 and weak association. Because a typical clinical dose of mAb is 50–200 mg/ml, these results have relevance for biophysical understanding of concentrated therapeutic proteins.
Collapse
Affiliation(s)
- J J Correia
- Department of Cell and Molecular Biology, University of MS Medical Center, Jackson, MS, USA.
| | - R T Wright
- Biophysics Group, Janssen Biotherapeutics, Spring House, PA, USA
| | | | - W F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Crowther JM, Broadhurst M, Laue TM, Jameson GB, Hodgkinson AJ, Dobson RCJ. On the utility of fluorescence-detection analytical ultracentrifugation in probing biomolecular interactions in complex solutions: a case study in milk. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:677-685. [PMID: 33052462 DOI: 10.1007/s00249-020-01468-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
β-Lactoglobulin is the most abundant protein in the whey fraction of ruminant milks, yet is absent in human milk. It has been studied intensively due to its impact on the processing and allergenic properties of ruminant milk products. However, the physiological function of β-lactoglobulin remains unclear. Using the fluorescence-detection system within the analytical ultracentrifuge, we observed an interaction involving fluorescently labelled β-lactoglobulin in its native environment, i.e. cow and goat milk, for the first time. Co-elution experiments support that these β-lactoglobulin interactions occur naturally in milk and provide evidence that the interacting partners are immunoglobulins, while further sedimentation velocity experiments confirm that an interaction occurs between these molecules. The identification of these interactions, made possible through the use of fluorescence-detected analytical ultracentrifugation, provides possible clues to the long debated physiological function of this abundant milk protein.
Collapse
Affiliation(s)
- Jennifer M Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Marita Broadhurst
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand
| | - Thomas M Laue
- Center To Advance Molecular Interaction Science, University of New Hampshire, Durham, NH, USA
| | - Geoffrey B Jameson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alison J Hodgkinson
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand.
- On-Farm R&D, Farm Source, Fonterra Co-Operative Group, Hamilton, 3200, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Dhankher A, Hernandez ME, Howard HC, Champion JA. Characterization and Control of Dynamic Rearrangement in a Self-Assembled Antibody Carrier. Biomacromolecules 2020; 21:1407-1416. [PMID: 32134251 DOI: 10.1021/acs.biomac.9b01712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thorough characterization of protein assemblies is required for the control of structure and robust performance in any given application, especially for the safety and stability of protein therapeutics. Here, we report the use of multiple, orthogonal characterization techniques to enable control over the structure of a multivalent antibody carrier for future use in drug delivery applications. The carrier, known as Hex, contains six antibody binding domains that bind the Fc region of antibodies. Using size exclusion chromatography, analytical ultracentrifugation, and dynamic light scattering, we identified the stoichiometry of assembled Hex-antibody complexes and observed changes in the stoichiometry of nanocarriers when incubated at higher temperatures over time. The characterization data informed the modification of Hex to achieve tighter control over the protein assembly structure for future therapeutic applications. This work demonstrates the importance of using orthogonal characterization techniques and observing protein assembly in different conditions over time to fully understand and control structure and dynamics.
Collapse
Affiliation(s)
- Anshul Dhankher
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Manuel E Hernandez
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hannah C Howard
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Schuster J, Koulov A, Mahler HC, Detampel P, Huwyler J, Singh S, Mathaes R. In Vivo Stability of Therapeutic Proteins. Pharm Res 2020; 37:23. [DOI: 10.1007/s11095-019-2689-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/05/2023]
|
18
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
19
|
Kim BS, Chuanoi S, Suma T, Anraku Y, Hayashi K, Naito M, Kim HJ, Kwon IC, Miyata K, Kishimura A, Kataoka K. Self-Assembly of siRNA/PEG-b-Catiomer at Integer Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes) for RNAi and Codelivery of Cargo Macromolecules. J Am Chem Soc 2019; 141:3699-3709. [DOI: 10.1021/jacs.8b13641] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Sayan Chuanoi
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoya Suma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Measuring macromolecular size distributions and interactions at high concentrations by sedimentation velocity. Nat Commun 2018; 9:4415. [PMID: 30356043 PMCID: PMC6200768 DOI: 10.1038/s41467-018-06902-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
In concentrated macromolecular solutions, weak physical interactions control the solution behavior including particle size distribution, aggregation, liquid-liquid phase separation, or crystallization. This is central to many fields ranging from colloid chemistry to cell biology and pharmaceutical protein engineering. Unfortunately, it is very difficult to determine macromolecular assembly states and polydispersity at high concentrations in solution, since all motion is coupled through long-range hydrodynamic, electrostatic, steric, and other interactions, and scattering techniques report on the solution structure when average interparticle distances are comparable to macromolecular dimensions. Here we present a sedimentation velocity technique that, for the first time, can resolve macromolecular size distributions at high concentrations, by simultaneously accounting for average mutual hydrodynamic and thermodynamic interactions. It offers high resolution and sensitivity of protein solutions up to 50 mg/ml, extending studies of macromolecular solution state closer to the concentration range of therapeutic formulations, serum, or intracellular conditions. Many aspects of concentrated macromolecular solutions, such as encountered in cytosol or in pharmaceutical formulations, are dependent on particle size distributions and weak intermolecular interactions. Here, the authors exploit hydrodynamic separation in the centrifugal field to measure both.
Collapse
|
21
|
Yang D, Correia JJ, Stafford III WF, Roberts CJ, Singh S, Hayes D, Kroe‐Barrett R, Nixon A, Laue TM. Weak IgG self- and hetero-association characterized by fluorescence analytical ultracentrifugation. Protein Sci 2018; 27:1334-1348. [PMID: 29637644 PMCID: PMC6032368 DOI: 10.1002/pro.3422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Weak protein-protein interactions may be important to binding cooperativity. A panel of seven fluorescently labeled tracer monoclonal IgG antibodies, differing in variable (V) and constant (C) region sequences, were sedimented in increasing concentrations of unlabeled IgGs of identical, similar, and different backgrounds. Weak IgG::IgG attractive interactions were detected and characterized by global analysis of the hydrodynamic nonideality coefficient, ks . The effects of salt concentration and temperature on ks suggest the interactions are predominantly enthalpic in origin. The interactions were found to be variable in strength, affected by both the variable and constant regions, but indiscriminate with respect to IgG subclass. Furthermore, weak attractive interactions were observed for all the mAbs with freshly purified human poly-IgG. The universality of the weak interactions suggest that they may contribute to effector function cooperativity in the normal immune response, and we postulate that the generality of the interactions allows for a broader range of epitope spacing for complement activation. These studies demonstrate the utility of analytical ultracentrifuge fluorescence detection in measuring weak protein-protein interactions. It also shows the strength of global analysis of sedimentation velocity data by SEDANAL to extract hydrodynamic nonideality ks to characterize weak macromolecular interactions.
Collapse
Affiliation(s)
- Danlin Yang
- Biotherapeutics Discovery ResearchBoehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticut06877
| | - John J. Correia
- Department of BiochemistryUniversity of Mississippi Medical CenterJacksonMississippi39216
| | | | - Christopher J. Roberts
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelaware19716
| | - Sanjaya Singh
- Janssen BioTherapeutics, Janssen Research and Development, LLCSpring HousePennsylvania19477
| | - David Hayes
- Biotherapeutics Discovery ResearchBoehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticut06877
| | - Rachel Kroe‐Barrett
- Biotherapeutics Discovery ResearchBoehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticut06877
| | - Andrew Nixon
- Biotherapeutics Discovery ResearchBoehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticut06877
| | - Thomas M. Laue
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew Hampshire03861
| |
Collapse
|
22
|
Wawra SE, Thoma M, Walter J, Lübbert C, Thajudeen T, Damm C, Peukert W. Ionomer and protein size analysis by analytical ultracentrifugation and electrospray scanning mobility particle sizer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:777-787. [PMID: 29909434 DOI: 10.1007/s00249-018-1314-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/17/2018] [Accepted: 06/07/2018] [Indexed: 11/25/2022]
Abstract
By combining analytical ultracentrifugation (AUC) in liquid phase and scanning mobility particle sizer (SMPS) in the gas phase, additional information on the particle size and morphology has been obtained for rigid particles. In this paper, we transfer this concept to soft particles, allowing us to analyze the size and molar mass of the short side chain perfluorosulfonic acid ionomer Aquivion® in a dilute aqueous suspension. The determination of the primary size and exact molar mass of this class of polymers is challenging since they are optically transparent and due to the formation of different aggregate structures depending on the concentration and solvent properties. First, validation of AUC and SMPS measurements was carried out using the well-defined biopolymers bovine serum albumin (BSA) and lysozyme (LYZ) to confirm the reliability of the results of the two unique and independent classifying methods. Then, the ionomer Aquivion® was studied using both techniques. From the mean molar mass of 185 ± 14 kDa obtained by AUC, a mean hydrodynamic diameter of 7.6 ± 0.5 nm was calculated. The particle size obtained from SMPS (7.1 nm) agrees very well with the results from AUC showing that the molecule was transferred into the gas phase without significantly changing its structure. In conclusion, the Aquivion® is molecularly dispersed in the used aqueous buffer solution without any aggregate formation in the investigated concentration range (< 2 g l-1).
Collapse
Affiliation(s)
- Simon E Wawra
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
| | - Martin Thoma
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
| | - Johannes Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058, Erlangen, Germany
| | - Christian Lübbert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058, Erlangen, Germany
| | - Thaseem Thajudeen
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058, Erlangen, Germany
- School of Mechanical Sciences, Indian Institute of Technology Goa, Ponda, 403401, India
| | - Cornelia Damm
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058, Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058, Erlangen, Germany.
| |
Collapse
|
23
|
Wright RT, Hayes DB, Stafford WF, Sherwood PJ, Correia JJ. Characterization of therapeutic antibodies in the presence of human serum proteins by AU-FDS analytical ultracentrifugation. Anal Biochem 2018; 550:72-83. [PMID: 29654743 DOI: 10.1016/j.ab.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
The preclinical characterization of biopharmaceuticals seeks to determine the stability, state of aggregation, and interaction of the antibody/drug with other macromolecules in serum. Analytical ultracentrifugation is the best experimental method to understand these factors. Sedimentation velocity experiments using the AU-FDS system were performed in order to quantitatively characterize the nonideality of fluorescently labeled therapeutic antibodies in high concentrations of human serum proteins. The two most ubiquitous serum proteins are human serum albumin, HSA, and γ-globulins, predominantly IgG. Tracer experiments were done pairwise as a function of HSA, IgG, and therapeutic antibody concentration. The sedimentation coefficient for each fluorescently labeled component as a function of the concentration of the unlabeled component yields the hydrodynamic nonideality (ks). This generates a 3x3 matrix of ks values that describe the nonideality of each pairwise interaction. The ks matrix is validated by fitting both 2:1 mixtures of HSA (1-40 mg/ml) and IgG (0.5-20 mg/ml) as serum mimics, and human serum dilutions (10-100%). The data are well described by SEDANAL global fitting with the ks nonideality matrix. The ks values for antibodies are smaller than expected and appear to be masked by weak association. Global fitting to a ks and K2 model significantly improves the fits.
Collapse
Affiliation(s)
- Robert T Wright
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - David B Hayes
- Biotherapeutics Discovery Research, Boehringer Ingelheim, Ridgefield, CT, 06877, USA
| | - Walter F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - John J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
24
|
Uchiyama S, Noda M, Krayukhina E. Sedimentation velocity analytical ultracentrifugation for characterization of therapeutic antibodies. Biophys Rev 2017; 10:259-269. [PMID: 29243091 DOI: 10.1007/s12551-017-0374-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) coupled with direct computational fitting of the observed concentration profiles (sedimentating boundary) have been developed and widely used for the characterization of macromolecules and nanoparticles in solution. In particular, size distribution analysis by SV-AUC has become a reliable and essential approach for the characterization of biopharmaceuticals including therapeutic antibodies. In this review, we describe the importance and advantages of SV-AUC for studying biopharmaceuticals, with an emphasis on strategies for sample preparation, data acquisition, and data analysis. Recent discoveries enabled by AUC with a fluorescence detection system and potential future applications are also discussed.
Collapse
Affiliation(s)
- Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.,U-Medico Inc., Osaka, Japan
| | - Elena Krayukhina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.,U-Medico Inc., Osaka, Japan
| |
Collapse
|
25
|
Abstract
Perhaps because they are such commonly used tools, many researchers view antibodies one-dimensionally: Antibody Y binds antigen X. Although few techniques require a comprehensive understanding of any particular antibody's characteristics, well-executed experiments do require a basic appreciation of what is known and, equally as important, what is not known about the antibody being used. Ignorance of the relevant antibody characteristics critical for a particular assay can easily lead to loss of precious resources (time, money, and limiting amounts of sample) and, in worst-case scenarios, erroneous conclusions. Here, we describe various antibody characteristics to provide a more well-rounded perspective of these critical reagents. With this information, it will be easier to make informed decisions on how best to choose and use the available antibodies, as well as knowing when it is essential and how to determine a particular as yet-undefined characteristic.
Collapse
|
26
|
Some Lessons Learned From a Comparison Between Sedimentation Velocity Analytical Ultracentrifugation and Size Exclusion Chromatography to Characterize and Quantify Protein Aggregates. J Pharm Sci 2017; 106:2178-2186. [DOI: 10.1016/j.xphs.2017.04.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 01/04/2023]
|
27
|
Goulet DR, Zwolak A, Chiu ML, Nath A, Atkins WM. Diffusion of Soluble Aggregates of THIOMABs and Bispecific Antibodies in Serum. Biochemistry 2017; 56:2251-2260. [PMID: 28394577 DOI: 10.1021/acs.biochem.6b01097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Submicrometer aggregates are frequently present at low levels in antibody-based therapeutics. Although intuition suggests that the fraction of the aggregate or the size of the aggregate present might correlate with deleterious clinical properties or formulation difficulties, it has been challenging to demonstrate which aggregate states, if any, trigger specific biological effects. One source of uncertainty about the putative linkage between aggregation and safety or efficacy lies in the likelihood that noncovalent aggregation differs in ideal buffers versus in serum and biological tissues; self-association or association with other proteins may vary widely with environment. Therefore, methods for monitoring aggregation and aggregate behavior in biologically relevant matrices could provide a tool for better predicting aggregate-dependent clinical outcomes and provide a basis for antibody engineering prior to clinical studies. Here, we generate models for soluble aggregates of THIOMABs and a bispecific antibody (bsAb) of defined size and exploit fluorescence correlation spectroscopy to monitor their diffusion properties in serum and viscosity-matched buffers. The monomers, dimers, and trimers of both THIOMABs and a bsAb reveal a modest increase in diffusion time in serum greater than expected for an increase in viscosity alone. A mixture of larger aggregates containing mostly bsAb pentamers exhibits a marked increase in diffusion time in serum and much greater intrasample variability, consistent with significant aggregation or interactions with serum components. The results indicate that small aggregates of several IgG platforms are not likely to aggregate with serum components, but nanometer-scale aggregates larger than trimers can interact with the serum in an Ab-dependent manner.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| | - Adam Zwolak
- Biologics Research, Janssen Research & Development, LLC , Spring House, Pennsylvania 19477, United States
| | - Mark L Chiu
- Biologics Research, Janssen Research & Development, LLC , Spring House, Pennsylvania 19477, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| |
Collapse
|
28
|
Chaturvedi SK, Zhao H, Schuck P. Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield. Biophys J 2017; 112:1374-1382. [PMID: 28402880 DOI: 10.1016/j.bpj.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multicomponent discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation-properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis, we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic cotransport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement, or Förster resonance energy transfer with transport methods.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
29
|
Krayukhina E, Noda M, Ishii K, Maruno T, Wakabayashi H, Tada M, Suzuki T, Ishii-Watabe A, Kato M, Uchiyama S. Analytical ultracentrifugation with fluorescence detection system reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environments. MAbs 2017; 9:664-679. [PMID: 28387583 PMCID: PMC5419078 DOI: 10.1080/19420862.2017.1297909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins.
Collapse
Affiliation(s)
- Elena Krayukhina
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Masanori Noda
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Kentaro Ishii
- c Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , Higashiyama, Myodaiji, Okazaki , Aichi , Japan
| | - Takahiro Maruno
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan
| | - Hirotsugu Wakabayashi
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan
| | - Minoru Tada
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Takuo Suzuki
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Akiko Ishii-Watabe
- d Division of Biological Chemistry and Biologicals , National Institute of Health Sciences , Kamiyoga, Setagaya-ku , Tokyo , Japan
| | - Masahiko Kato
- e Sysmex Corporation , Murotani, Nishi-ku, Kobe-shi , Hyogo , Japan
| | - Susumu Uchiyama
- a Graduate School of Engineering, Osaka University , Yamadaoka, Suita , Osaka , Japan.,b U-Medico Inc. , Yamadaoka, Suita , Osaka , Japan.,c Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , Higashiyama, Myodaiji, Okazaki , Aichi , Japan
| |
Collapse
|
30
|
Abstract
This chapter illustrates how analytical ultracentrifugation methods, coupled with the fluorescence detection system, are an excellent approach to characterizing and comparing protein-binding interactions in dilute solution and concentrated, crowded solutions like serum. We show that in serum, the binding and assembly states for a pair of endogenous protein ligands and an antibody inhibitor are dramatically different than those observed in dilute, simple buffers. This type of analysis approach may be helpful in research efforts intent at discerning the underpinnings to a therapeutic's activity and pharmacokinetic properties in vivo.
Collapse
Affiliation(s)
| | - Thomas M Laue
- Center to Advance Molecular Interaction Science, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
31
|
Li X, Geng SB, Chiu ML, Saro D, Tessier PM. High-throughput assay for measuring monoclonal antibody self-association and aggregation in serum. Bioconjug Chem 2015; 26:520-8. [PMID: 25714504 DOI: 10.1021/acs.bioconjchem.5b00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subcutaneous delivery is one of the preferred administration routes for therapeutic monoclonal antibodies (mAbs). High antibody dosing requirements and small injection volumes necessitate formulation and delivery of highly concentrated mAb solutions. Such elevated antibody concentrations can lead to undesirable solution behaviors such as mAb self-association and aggregation, which are relatively straightforward to detect using various biophysical methods because of the high purity and concentration of antibody formulations. However, the biophysical properties of mAbs in serum can also impact antibody activity, but these properties are less well understood because of the difficulty characterizing mAbs in such a complex environment. Here we report a high-throughput assay for directly evaluating mAb self-association and aggregation in serum. Our approach involves immobilizing polyclonal antibodies specific for human mAbs on gold nanoparticles, and then using these conjugates to capture human antibodies at a range of subsaturating to saturating mAb concentrations in serum. Antibody aggregation is detected at subsaturating mAb concentrations via blue-shifted plasmon wavelengths due to the reduced efficiency of capturing mAb aggregates relative to monomers, which reduces affinity cross-capture of mAbs by multiple conjugates. In contrast, antibody self-association is detected at saturating mAb concentrations via red-shifted plasmon wavelengths due to attractive interparticle interactions between immobilized mAbs. The high-throughput nature of this assay along with its compatibility with unusually dilute mAb solutions (0.1-10 μg per mL) should make it useful for identifying antibody candidates with high serum stability during early antibody discovery.
Collapse
|
32
|
Prediction of Aggregation In Vivo by Studies of Therapeutic Proteins in Human Plasma. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Moorthy BS, Xie B, Moussa EM, Iyer LK, Chandrasekhar S, Panchal JP, Topp EM. Effect of Hydrolytic Degradation on the In Vivo Properties of Monoclonal Antibodies. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Liu J, Yadav S, Andya J, Demeule B, Shire SJ. Analytical Ultracentrifugation and Its Role in Development and Research of Therapeutical Proteins. Methods Enzymol 2015; 562:441-76. [DOI: 10.1016/bs.mie.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Most asthma patients are easily managed with a standard combination of therapies consisting of inhaled controller and reliever drugs, but there remains a large unmet need at the severe end of the disease spectrum. For these patients, development of safer and more effective therapies for asthmatic patients with severe refractory disease remains a top priority. Here, drugs in development for the severe asthma sufferers and their specific mechanism-based pharmacological rationale will be reviewed with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Here, the authors will review the existing efficacy and safety data from clinical trials of some of the new biologic therapies that are in development for severe asthma. RECENT FINDINGS Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics have been largely disappointing. However, there is scope for their specific role in distinctively targeted subpopulations of severe asthmatic patients. SUMMARY It is clear that more efforts should be devoted towards establishing new and more efficient key targets. A closer interaction between industry, academia and health workers will be required to achieve this goal effectively.
Collapse
|
36
|
Chirumbolo S. Immunotherapy in allergy and cellular tests: state of art. Hum Vaccin Immunother 2014; 10:1595-610. [PMID: 24717453 PMCID: PMC5396242 DOI: 10.4161/hv.28592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022] Open
Abstract
The basophil activation test (BAT) is an in vitro assay where the activation of basophils upon exposure to various IgE-challenging molecules is measured by flow cytometry. It is a cellular test able to investigate basophil behavior during allergy and allergy immunotherapy. A panoply of critical issues and suggestive advances have rendered this assay a promising yet puzzling tool to endeavor a full comprehension of innate immunity of allergy desensitization and manage allergen or monoclonal anti-IgE therapy. In this review a brief state of art of BAT in immunotherapy is described focusing onto the analytical issue pertaining BAT performance in allergy specific therapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine; University of Verona; Verona, Italy
- Laboratory of Physiopathology of Obesity; Depertment of Medicine-University of Verona; LURM Est Policlinico GB Rossi; Verona, Italy
| |
Collapse
|
37
|
Chirumbolo S, Olivieri M. Increase in human basophils IgE-mediated stimulation by omalizumab: A role for membrane FcγRs? J Allergy Clin Immunol 2014; 133:1493-4. [DOI: 10.1016/j.jaci.2013.12.1094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/05/2013] [Indexed: 12/18/2022]
|
38
|
Cohen ES, Dobson CL, Käck H, Wang B, Sims DA, Lloyd CO, England E, Rees DG, Guo H, Karagiannis SN, O'Brien S, Persdotter S, Ekdahl H, Butler R, Keyes F, Oakley S, Carlsson M, Briend E, Wilkinson T, Anderson IK, Monk PD, von Wachenfeldt K, Eriksson POF, Gould HJ, Vaughan TJ, May RD. A novel IgE-neutralizing antibody for the treatment of severe uncontrolled asthma. MAbs 2014; 6:756-64. [PMID: 24583620 DOI: 10.4161/mabs.28394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The critical role played by IgE in allergic asthma is well-documented and clinically precedented, but some patients in whom IgE neutralization may still offer clinical benefit are excluded from treatment with the existing anti-IgE therapy, omalizumab, due to high total IgE levels or body mass. In this study, we sought to generate a novel high affinity anti-IgE antibody (MEDI4212) with potential to treat a broad severe asthma patient population. Analysis of body mass, total and allergen-specific IgE levels in a cohort of severe asthmatics was used to support the rationale for development of a high affinity IgE-targeted antibody therapeutic. Phage display technology was used to generate a human IgG1 lead antibody, MEDI4212, which was characterized in vitro using binding, signaling and functional assay systems. Protein crystallography was used to determine the details of the interaction between MEDI4212 and IgE. MEDI4212 bound human IgE with an affinity of 1.95 pM and was shown to target critical residues in the IgE Cε3 domain critical for interaction with FcεRI. MEDI4212 potently inhibited responses through FcεRI and also prevented the binding of IgE to CD23. When used ex vivo at identical concentration, MEDI4212 depleted free-IgE from human sera to levels ~1 log lower than omalizumab. Our results thus indicate that MEDI4212 is a novel, high affinity antibody that binds specifically to IgE and prevents IgE binding to its receptors. MEDI4212 effectively depleted free-IgE from human sera ex vivo to a level (1 IU/mL) anticipated to provide optimal IgE suppression in severe asthma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sophia N Karagiannis
- 5 Cutaneous Medicine and Immunotherapy Unit; St. John's Institute of Dermatology; Division of Genetics and Molecular Medicine; King's College London School of Medicine & NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London; Guy's Hospital; King's College London; London, UK
| | | | | | | | | | | | | | | | | | | | | | - Phillip D Monk
- Synairgen Research Ltd; Southampton General Hospital; Southampton, UK
| | | | | | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics; Division of Asthma, Allergy and Lung Biology; MRC and Asthma UK Centre for Allergic Mechanisms of Asthma; King's College London; London, UK
| | | | | |
Collapse
|
39
|
Yadav S, Liu J, Scherer TM, Gokarn Y, Demeule B, Kanai S, Andya JD, Shire SJ. Assessment and significance of protein-protein interactions during development of protein biopharmaceuticals. Biophys Rev 2013; 5:121-136. [PMID: 28510158 PMCID: PMC5418437 DOI: 10.1007/s12551-013-0109-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/31/2013] [Indexed: 11/28/2022] Open
Abstract
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein-protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein-protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody-antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.
Collapse
Affiliation(s)
| | - Jun Liu
- Genentech, South San Francisco, CA USA
| | | | - Yatin Gokarn
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg Matunga (E), Mumbai, 400,019 India
| | | | | | | | | |
Collapse
|
40
|
Federici M, Lubiniecki A, Manikwar P, Volkin DB. Analytical lessons learned from selected therapeutic protein drug comparability studies. Biologicals 2013; 41:131-47. [DOI: 10.1016/j.biologicals.2012.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023] Open
|
41
|
Arvinte T, Palais C, Green-Trexler E, Gregory S, Mach H, Narasimhan C, Shameem M. Aggregation of biopharmaceuticals in human plasma and human serum: implications for drug research and development. MAbs 2013; 5:491-500. [PMID: 23571158 PMCID: PMC4169040 DOI: 10.4161/mabs.24245] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Analytical methods based on light microscopy, 90° light-scattering and surface plasmon resonance (SPR) allowed the characterization of aggregation that can occur when antibodies are mixed with human plasma. Light microscopy showed that aggregates formed when human plasma was mixed with 5% dextrose solutions of Herceptin® (trastuzumab) or Avastin® (bevacizumab) but not Remicade® (infliximab). The aggregates in the plasma-Herceptin®-5% dextrose solution were globular, size range 0.5–9 μm, with a mean diameter of 4 μm. The aggregates in the plasma-Avastin®-5% dextrose samples had a mean size of 2 μm. No aggregation was observed when 0.9% NaCl solutions of Herceptin®, Avastin® and Remicade® were mixed with human plasma. 90° light-scattering measurements showed that aggregates were still present 2.5 h after mixing Herceptin® or Avastin® with 5% dextrose-plasma solution. A SPR method was utilized to qualitatively describe the extent of interactions of surface-bound antibodies with undiluted human serum. Increased binding was observed in the case of Erbitux® (cetuximab), whereas no binding was measured for Humira® (adalimumab). The binding of sera components to 13 monoclonal antibodies was measured and correlated with known serum binding properties of the antibodies. The data presented in this paper provide analytical methods to study the intrinsic and buffer-dependent aggregation tendencies of therapeutic proteins when mixed with human plasma and serum.
Collapse
Affiliation(s)
- Tudor Arvinte
- Therapeomic Inc.; Basel, Switzerland; School of Pharmaceutical Sciences; University of Geneva; University of Lausanne; Geneva, Switzerland
| | | | - Erin Green-Trexler
- Vaccine Drug Product Development; Merck Research Laboratories; West Point, PA USA
| | - Sonia Gregory
- Vaccine Drug Product Development; Merck Research Laboratories; West Point, PA USA
| | - Henryk Mach
- Vaccine Drug Product Development; Merck Research Laboratories; West Point, PA USA
| | | | - Mohammed Shameem
- Sterile Product Development; Merck Research Laboratories; Summit, NJ USA
| |
Collapse
|
42
|
Caruso M, Crisafulli E, Demma S, Holgate S, Polosa R. Disabling inflammatory pathways with biologics and resulting clinical outcomes in severe asthma. Expert Opin Biol Ther 2013; 13:393-402. [PMID: 23289846 DOI: 10.1517/14712598.2013.743989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Patients with severe asthma have a significant unmet need with persistent symptoms and/or frequent exacerbations despite high intensity treatment. These severe unrelenting symptoms have a huge impact on heathcare resources due to frequent hospital admissions and requirement for intensive and expensive medications. There is a compelling need for more effective and safer therapies to help severe asthma sufferers to achieve adequate control of their disease. AREAS COVERED Expanding knowledge of innate and adaptive immune responses has led to development of new biologic approaches for severe asthma. Here, the authors will review the existing efficacy and safety data from clinical trials of some of the new biologic therapies that are in development for severe asthma. Their specific role in distinctively targeted subpopulations of severe asthmatics will be also discussed. EXPERT OPINION Defining and phenotyping severe asthma patients will become increasingly important as some patients who were previously classified as having severe asthma may become well-controlled with a targeted phenotype-specific treatment. However, pharmacoeconomic concerns should also be taken into account given the elevated acquisition costs of recombinant human monoclonals and of the diagnostic screening procedures for the identification of potential responders.
Collapse
Affiliation(s)
- Massimo Caruso
- University of Catania-AOU Policlinico-V. Emanuele, Department of Clinical and Molecular Bio-Medicine-Institute of Internal Medicine and Clinical Immunology, Catania, 95124, Italy
| | | | | | | | | |
Collapse
|
43
|
The pharmacological mechanisms of omalizumab in patients with very high IgE levels—Clues from studies on atopic dermatitis. DERMATOL SIN 2012. [DOI: 10.1016/j.dsi.2012.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Biosimilars and biobetters as tools for understanding and mitigating the immunogenicity of biotherapeutics. Drug Discov Today 2012; 17:1282-8. [PMID: 22796124 DOI: 10.1016/j.drudis.2012.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/11/2012] [Accepted: 07/04/2012] [Indexed: 11/21/2022]
Abstract
In this article, we review key steps for the development of biosimilars and biobetters and related bioanalytical challenges, with a focus on how they are associated with immunogenicity. We analyze the factors that can impact antidrug antibody (ADA) responses and their correlations with preclinical and clinical outcomes to provide relevant insights and to answer questions, including what types of aggregate are immunogenic. We also address strategies for developing less-immunogenic biotherapeutics. Using interferon-β (IFN-β) as a case study, we explore the correlation between aggregation and immunogenicity. We dissect and integrate with clinical data the IFN-β preclinical immunogenicity and aggregation predictions and discuss the feasibility of developing an IFN-β with lower aggregation and/or immunogenicity.
Collapse
|
45
|
Kingsbury JS, Laue TM, Chase SF, Connors LH. Detection of high-molecular-weight amyloid serum protein complexes using biological on-line tracer sedimentation. Anal Biochem 2012; 425:151-6. [PMID: 22465331 PMCID: PMC3354566 DOI: 10.1016/j.ab.2012.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/14/2023]
Abstract
The systemic amyloidoses are a rare but deadly class of protein folding disorders with significant unmet diagnostic and therapeutic needs. The current model for symptomatic amyloid progression includes a causative role for soluble toxic aggregates as well as for the fibrillar tissue deposits. Although much research is focused on elucidating the potential mechanism of aggregate toxicity, evidence to support their existence in vivo has been limited. We report the use of a technique we have termed biological on-line tracer sedimentation (BOLTS) to detect abnormal high-molecular-weight complexes (HMWCs) in serum samples from individuals with systemic amyloidosis due to aggregation and deposition of wild-type transthyretin (senile systemic amyloidosis, SSA) or monoclonal immunoglobulin light chain (AL amyloidosis). In this proof-of-concept study, HMWCs were observed in 31 of 77 amyloid samples (40.3%). HMWCs were not detected in any of the 17 nonamyloid control samples subjected to BOLTS analyses. These findings support the existence of potentially toxic amyloid aggregates and suggest that BOLTS may be a useful analytic and diagnostic platform in the study of the amyloidoses or other diseases where abnormal molecular complexes are formed in serum.
Collapse
Affiliation(s)
- Jonathan S. Kingsbury
- Alan and Sandra Gerry Amyloid Research Laboratory in the Amyloid Treatment and Research Program, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Thomas M. Laue
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Susan F. Chase
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Lawreen H. Connors
- Alan and Sandra Gerry Amyloid Research Laboratory in the Amyloid Treatment and Research Program, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| |
Collapse
|
46
|
Holgate ST. Trials and tribulations in identifying new biologic treatments for asthma. Trends Immunol 2012; 33:238-46. [PMID: 22436378 DOI: 10.1016/j.it.2012.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/29/2012] [Accepted: 02/13/2012] [Indexed: 12/14/2022]
Abstract
Drugs used to treat asthma have a long history, beginning with the bronchodilators and evolving into compounds that suppress airway inflammation. Guidelines for treatment of asthma are largely based on disease severity and control, rather than underlying mechanisms. However, identification of biomarkers in the causal pathways of asthma is enabling responders to be differentiated from nonresponders. Initial efforts have focused on biomarkers of the T helper (Th)2 pathway because this is a target of novel therapeutics. A concerted effort is now needed to substratify asthma beyond Th2 pathways, and using appropriate biomarkers, to target only those patients likely to respond to a specific biologic. To achieve this goal, a different type of relationship is needed between academia and industry, and also within industry, to promote collaboration in the precompetitive space.
Collapse
Affiliation(s)
- Stephen T Holgate
- Inflammation, Infection and Immunity Division, Sir Henry Wellcome Laboratories, Mail Point 810, Level F, South Block, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
47
|
Filipe V, Poole R, Oladunjoye O, Braeckmans K, Jiskoot W. Detection and characterization of subvisible aggregates of monoclonal IgG in serum. Pharm Res 2012; 29:2202-12. [PMID: 22467219 PMCID: PMC3399096 DOI: 10.1007/s11095-012-0749-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/22/2012] [Indexed: 12/18/2022]
Abstract
Purpose To detect and characterize the aggregation of therapeutic monoclonal antibodies in undiluted biological fluids. Methods Fluorescently labeled subvisible IgG aggregates formed by applying either heat stress or by pH-shift were investigated immediately after addition to human serum, and after 24 h. Unstressed and stressed IgG formulations were analyzed by fluorescence single particle tracking, confocal laser scanning microscopy and flow cytometry. Results Unstressed formulations remained free from subvisible aggregates in serum, whereas heat-stressed and pH-shift stressed formulations showed dissimilar aggregation behaviors. The aggregation profile of the heat-stressed formulation diluted in serum remained practically the same as the one diluted in buffer, even after the 24 h incubation period. The pH-shift stressed formulation had strikingly smaller and more numerous subvisible aggregates immediately after dilution in serum compared to buffer. These aggregates became noticeably larger in both diluents after 24 h, but in serum they appeared to be formed by other types of constituents than the labeled protein itself. Conclusion These results show that subvisible therapeutic protein aggregates may undergo changes in number, type and size distribution upon contact with human serum. This emphasizes the importance of analytical strategies for monitoring aggregation in undiluted biological fluids. Electronic supplementary material The online version of this article (doi:10.1007/s11095-012-0749-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasco Filipe
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Arthur KK, Gabrielson JP, Hawkins N, Anafi D, Wypych J, Nagi A, Sullivan JK, Bondarenko PV. In vitro stoichiometry of complexes between the soluble RANK ligand and the monoclonal antibody denosumab. Biochemistry 2012; 51:795-806. [PMID: 22242921 DOI: 10.1021/bi2007806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro binding stoichiometry of denosumab, an IgG2 fully human monoclonal therapeutic antibody, to RANK ligand was determined by multiple complementary size separation techniques with mass measuring detectors, including two solution-based techniques (size-exclusion chromatography with static light scattering detection and sedimentation velocity analytical ultracentrifugation) and a gas-phase analysis by electrospray ionization time-of-flight mass spectrometry from aqueous nondenaturing solutions. The stoichiometry was determined under defined conditions ranging from small excess RANK ligand to large excess denosumab (up to 40:1). High concentrations of denosumab relative to RANK ligand were studied because of their physiological relevance; a large excess of denosumab is anticipated in circulation for extended periods relative to much lower concentrations of free soluble RANKL. The studies revealed that an assembly including 3 denosumab antibody molecules bound to 2 RANKL trimers (3D2R) is the most stable complex in DPBS at 37 °C. This differs from the 1:1 binding stoichiometry reported for RANKL and osteoprotegerin (OPG), a soluble homodimeric decoy receptor which binds RANKL with high affinity. Denosumab and RANKL also formed smaller assemblies including 1 denosumab and 2 RANKL trimer molecules (1D2R) under conditions of excess RANKL, 3 denosumab molecules and 1 RANKL trimer (3D1R) under conditions of excess denosumab, and larger assemblies, but these intermediate species were only present at lower temperatures (4 °C), shortly after mixing denosumab and RANKL, and converted over time to the more stable 3D2R assembly.
Collapse
Affiliation(s)
- Kelly K Arthur
- Analytical Sciences Department, Amgen Inc., Longmont, Colorado 80503, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, Hawe A. Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci 2011; 101:914-35. [PMID: 22161573 DOI: 10.1002/jps.23001] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/31/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022]
Abstract
The presence of particles is a major issue during therapeutic protein formulation development. Both proteinaceous and nonproteinaceous particles need to be analyzed not only due to the requirements of the Pharmacopeias but also to monitor the stability of the protein formulation. Increasing concerns about the immunogenic potential together with new developments in particle analysis make a comparative description of established and novel analytical methods useful. Our review aims to provide a comprehensive overview on analytical methods for the detection and characterization of visible and subvisible particles in therapeutic protein formulations. We describe the underlying theory, benefits, shortcomings, and illustrative examples for quantification techniques, as well as characterization techniques for particle shape, morphology, structure, and identity.
Collapse
Affiliation(s)
- Sarah Zölls
- Coriolis Pharma, Am Klopferspitz 19, 82152 Martinsried-Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
|