1
|
Shchukina A, Schwarz TC, Nowakowski M, Konrat R, Kazimierczuk K. Non-uniform sampling of similar NMR spectra and its application to studies of the interaction between alpha-synuclein and liposomes. JOURNAL OF BIOMOLECULAR NMR 2023; 77:149-163. [PMID: 37237169 PMCID: PMC10406685 DOI: 10.1007/s10858-023-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they should contain relatively few "significant" points. The more compressible the spectrum, the fewer experimental NUS points needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling levels as the difference is sparser than the spectrum itself. In many situations this method is superior to "conventional" compressed sensing. We exemplify the concept of "difference CS" with one such case-the study of alpha-synuclein binding to liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces the number of NUS points required and thus significantly shortens the experimental time.
Collapse
Affiliation(s)
- Alexandra Shchukina
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus 5, 1030, Vienna, Austria
| | - Michał Nowakowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus 5, 1030, Vienna, Austria
| | | |
Collapse
|
2
|
Hassan Q, Dutta Majumdar R, Wu B, Lane D, Tabatabaei-Anraki M, Soong R, Simpson MJ, Simpson AJ. Improvements in lipid suppression for 1 H NMR-based metabolomics: Applications to solution-state and HR-MAS NMR in natural and in vivo samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 57:69-81. [PMID: 30520113 DOI: 10.1002/mrc.4814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) spectra of intact biological samples often show strong contributions from lipids, which overlap with signals of interest from small metabolites. Pioneering work by Diserens et al. demonstrated that the relative differences in diffusivity and relaxation of lipids versus small metabolites could be exploited to suppress lipid signals, in high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. In solution-state NMR, suspended samples can exhibit very broad water signals, which are challenging to suppress. Here, improved water suppression is incorporated into the sequence, and the Carr-Purcell-Meiboom-Gill sequence (CPMG) train is replaced with a low-power adiabatic spinlock that reduces heating and spectral artefacts seen with longer CPMG filters. The result is a robust sequence that works well in both HR-MAS as well as static solution-state samples. Applications are also extended to include in vivo organisms. For solution-state NMR, samples containing significant amount of fats such as milk and hemp hearts seeds are used to demonstrate the technique. For HR-MAS, living earthworms (Eisenia fetida) and freshwater shrimp (Hyalella azteca) are used for in vivo applications. Lipid suppression techniques are essential for non-invasive NMR-based analysis of biological samples with a high-lipid content and adds to the suite of experiments advantageous for in vivo environmental metabolomics.
Collapse
Affiliation(s)
- Qusai Hassan
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Bing Wu
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Tabatabaei-Anraki
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Abstract
NMR spectroscopy has proven to be a key method for studying intrinsically disordered proteins (IDPs). Nonetheless, traditional NMR methods developed for solving structures of ordered protein complexes are insufficient for the full characterization of dynamic IDP complexes, where the energy landscape is broader and more rugged. Furthermore, due to their high sensitivity to environmental changes, NMR studies of IDP complexes must be conducted with extra care and the observed NMR parameters thoroughly evaluated to enable disentanglement of binding events from ensemble distribution changes. In this chapter, written for the non-NMR expert, we start out by outlining sample preparation for IDP complexes, guide through the recording and evaluation of diagnostic 1H,15N-HSQC spectra, and delineate more sophisticated NMR strategies to follow for the particular type of complex. The most relevant experiments are then described in terms of aims, needs, pitfalls, analysis, and expected outcomes, with references to recent examples.
Collapse
|
4
|
Diserens G, Vermathen M, Precht C, Broskey NT, Boesch C, Amati F, Dufour JF, Vermathen P. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study. Analyst 2015; 140:272-9. [PMID: 25368873 DOI: 10.1039/c4an01663g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Collapse
Affiliation(s)
- G Diserens
- Depts. Clinical Research and Radiology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
6
|
Roldós V, Cañada FJ, Jiménez-Barbero J. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem 2011; 12:990-1005. [DOI: 10.1002/cbic.201000705] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 12/29/2022]
|
7
|
Wang Y, Zhang T, Xu J, Du W. Comparison of the binding affinity of chlorogenic acid with two serum albumins. Int J Biol Macromol 2011; 48:81-6. [DOI: 10.1016/j.ijbiomac.2010.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
|
8
|
Novoa-Carballal R, Fernandez-Megia E, Jimenez C, Riguera R. NMR methods for unravelling the spectra of complex mixtures. Nat Prod Rep 2010; 28:78-98. [PMID: 20936238 DOI: 10.1039/c005320c] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main methods for the simplification of the NMR of complex mixtures by selective attenuation/suppression of the signals of certain components are presented. The application of relaxation, diffusion and PSR filters and other techniques to biological samples, pharmaceuticals, foods, living organisms and natural products are illustrated with examples.
Collapse
Affiliation(s)
- Ramon Novoa-Carballal
- Department of Organic Chemistry and Centre for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|