1
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
3
|
Mukherjee M, Sistla S, Veerabhadraiah SR, Bettadaiah BK, Thakur MS, Bhatt P. DNA aptamer selection and detection of marine biotoxin 20 Methyl Spirolide G. Food Chem 2021; 363:130332. [PMID: 34144421 DOI: 10.1016/j.foodchem.2021.130332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
This study reports the selection of DNA aptamer for the detection of 20 Methyl Spirolide G (SPXG). After 10 rounds of selection, theenriched pool of aptamers specific to SPXGwas cloned, sequenced and clustered into seven families based onsimilarity. Three sequences SPX1, SPX2 and SPX7, each belonging to different clades were further evaluated for their binding affinity. Surface plasmonresonancestudies determined the highest affinity KDof 0.0345x10-8 M for aptamer SPX7. A label-free microscale thermophoresis-based aptasensing using SPX7 with highest affinity, indicated a linear detection range from 1.9 to 125000 pg/mL (LOD = 0.39 pg/mL; LOQ = 1.17 pg/mL). Spiking studies in simulated contaminated samples of mussel and scallop indicated recoveries in the range of 86 to 108%. Results of this study indicate the successful development of an aptamer for detection of SPXG at picogram levels. It also opens up avenues to develop other sensing platforms for detection of SPXG using the reported aptamer.
Collapse
Affiliation(s)
- Monali Mukherjee
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy - Dept of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Shivakumar R Veerabhadraiah
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - B K Bettadaiah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India; Spices and Flavour Sciences Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - M S Thakur
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Praveena Bhatt
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India.
| |
Collapse
|
4
|
Fluorescence polarization assays for chemical contaminants in food and environmental analyses. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Molgó J, Marchot P, Aráoz R, Benoit E, Iorga BI, Zakarian A, Taylor P, Bourne Y, Servent D. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. J Neurochem 2017; 142 Suppl 2:41-51. [PMID: 28326551 DOI: 10.1111/jnc.13995] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Abstract
We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yves Bourne
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Davidson K, Baker C, Higgins C, Higman W, Swan S, Veszelovszki A, Turner AD. Potential Threats Posed by New or Emerging Marine Biotoxins in UK Waters and Examination of Detection Methodologies Used for Their Control: Cyclic Imines. Mar Drugs 2015; 13:7087-112. [PMID: 26703628 PMCID: PMC4699231 DOI: 10.3390/md13127057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Cyclic imines (CIs) are a group of phytoplankton produced toxins related to shellfish food products, some of which are already present in UK and European waters. Their risk to shellfish consumers is poorly understood, as while no human intoxication has been definitively related to this group, their fast acting toxicity following intraperitoneal injection in mice has led to concern over their human health implications. A request was therefore made by UK food safety authorities to examine these toxins more closely to aid possible management strategies. Of the CI producers only the spirolide producer Alexandrium ostenfeldii is known to exist in UK waters at present but trends in climate change may lead to increased risk from other organisms/CI toxins currently present elsewhere in Europe and in similar environments worldwide. This paper reviews evidence concerning the prevalence of CIs and CI-producing phytoplankton, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.
Collapse
Affiliation(s)
- Keith Davidson
- Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, Scotland, UK.
| | - Clothilde Baker
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - Cowan Higgins
- Agri-food and Biosciences Institute (AFBI), Newforge Lane, Belfast BT9 5PX, Northern Ireland, UK.
| | - Wendy Higman
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - Sarah Swan
- Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, Scotland, UK.
| | - Andrea Veszelovszki
- Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, Scotland, UK.
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
7
|
Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep 2015; 32:411-35. [PMID: 25338021 DOI: 10.1039/c4np00089g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.
Collapse
Affiliation(s)
- Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Hellyer SD, Indurthi D, Balle T, Runder-Varga V, Selwood AI, Tyndall JD, Chebib M, Rhodes L, Kerr DS. Pinnatoxins E, F and G target multiple nicotinic receptor subtypes. J Neurochem 2015; 135:479-91. [DOI: 10.1111/jnc.13245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Shane D. Hellyer
- Department of Pharmacology and Toxicology; University of Otago School of Medical Sciences; Dunedin New Zealand
| | - Dinesh Indurthi
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | - Thomas Balle
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | | | | | - Joel D.A. Tyndall
- New Zealand's National School of Pharmacy; University of Otago; Dunedin New Zealand
| | - Mary Chebib
- Faculty of Pharmacy; University of Sydney; Sydney NSW Australia
| | | | - D. Steven Kerr
- Department of Pharmacology and Toxicology; University of Otago School of Medical Sciences; Dunedin New Zealand
| |
Collapse
|
9
|
Silva M, Pratheepa VK, Botana LM, Vasconcelos V. Emergent toxins in North Atlantic temperate waters: a challenge for monitoring programs and legislation. Toxins (Basel) 2015; 7:859-85. [PMID: 25785464 PMCID: PMC4379530 DOI: 10.3390/toxins7030859] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
Abstract
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
Collapse
Affiliation(s)
- Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| | - Vijaya K Pratheepa
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, Lugo 27002, Spain.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| |
Collapse
|
10
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
11
|
High-throughput receptor-based assay for the detection of spirolides by chemiluminescence. Toxicon 2013; 75:35-43. [DOI: 10.1016/j.toxicon.2013.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022]
|
12
|
Munday R, Reeve J. Risk assessment of shellfish toxins. Toxins (Basel) 2013; 5:2109-37. [PMID: 24226039 PMCID: PMC3847717 DOI: 10.3390/toxins5112109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 01/24/2023] Open
Abstract
Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-7-838-5138; Fax: +64-7-838-5012
| | - John Reeve
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand; E-Mail:
| |
Collapse
|
13
|
Aráoz R, Ramos S, Pelissier F, Guérineau V, Benoit E, Vilariño N, Botana LM, Zakarian A, Molgó J. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins. Anal Chem 2012; 84:10445-53. [PMID: 23131021 PMCID: PMC4118673 DOI: 10.1021/ac3027564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Rómulo Aráoz
- Centre de Recherche CNRS de Gif-sur-Yvette, Institut Fédératif de Neurobiologie Alfred Fessard FR2118, Laboratoire de Neurobiologie et Développement UPR 3294, 91198 Gif sur Yvette, France
| | - Suzanne Ramos
- Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif sur Yvette, France
| | - Franck Pelissier
- Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif sur Yvette, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif sur Yvette, France
| | - Evelyne Benoit
- Centre de Recherche CNRS de Gif-sur-Yvette, Institut Fédératif de Neurobiologie Alfred Fessard FR2118, Laboratoire de Neurobiologie et Développement UPR 3294, 91198 Gif sur Yvette, France
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Campus Universitario, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Campus Universitario, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Jordi Molgó
- Centre de Recherche CNRS de Gif-sur-Yvette, Institut Fédératif de Neurobiologie Alfred Fessard FR2118, Laboratoire de Neurobiologie et Développement UPR 3294, 91198 Gif sur Yvette, France
| |
Collapse
|
14
|
Hellyer SD, Selwood AI, Rhodes L, Kerr DS. Marine algal pinnatoxins E and F cause neuromuscular block in an in vitro hemidiaphragm preparation. Toxicon 2011; 58:693-9. [DOI: 10.1016/j.toxicon.2011.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
15
|
Paredes I, Rietjens I, Vieites J, Cabado A. Update of risk assessments of main marine biotoxins in the European Union. Toxicon 2011; 58:336-54. [DOI: 10.1016/j.toxicon.2011.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 07/04/2011] [Indexed: 01/16/2023]
|
16
|
Rodríguez LP, Vilariño N, Molgó J, Aráoz R, Antelo A, Vieytes MR, Botana LM. Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines by Chemiluminescence, Fluorescence, or Colorimetry. Anal Chem 2011; 83:5857-63. [DOI: 10.1021/ac200423s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura P. Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Jordi Molgó
- CNRS, Institut Fédératif de Neurobiologie Alfred Fessard—FRC2118, Laboratoire de Neurobiologie et Développement—UPR3294, 91198 Gif sur Yvette cedex, France
| | - Rómulo Aráoz
- CNRS, Institut Fédératif de Neurobiologie Alfred Fessard—FRC2118, Laboratoire de Neurobiologie et Développement—UPR3294, 91198 Gif sur Yvette cedex, France
| | - Alvaro Antelo
- CIFGA Laboratorio, Plaza de Santo Domingo, 20, 5a planta, 27001 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
17
|
Otero P, Alfonso A, Alfonso C, Rodríguez P, Vieytes MR, Botana LM. Effect of uncontrolled factors in a validated liquid chromatography-tandem mass spectrometry method question its use as a reference method for marine toxins: major causes for concern. Anal Chem 2011; 83:5903-11. [PMID: 21651235 DOI: 10.1021/ac200732m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatographic techniques coupled to mass spectrometry is the method of choice to replace the mouse bioassay (MBA) to detect marine toxins. This paper evaluates the influence of different parameters such as toxin solvents, mass spectrometric detection method, mobile-phase-solvent brands and equipment on okadaic acid (OA), dinophysistoxin-1 (DTX-1), and dinophysistoxin-2 (DTX-2) quantification. In addition, the study compares the results obtained when a toxin is quantified against its own calibration curve and with the calibration curve of the other analogues. The experiments were performed by liquid chromatography (LC) and ultraperformance liquid chromatography (UPLC) with tandem mass spectrometry detection (MS/MS). Three acetonitrile brands and two toxin solvents were employed, and three mass spectrometry detection methods were checked. One method that contains the transitions for azaspiracid-1 (AZA-1), azaspiracid-2 (AZA-2), azaspiracid-3(AZA-3), gimnodimine (GYM), 13-desmethyl spirolide C (SPX-1), pectenotoxin-2 (PTX-2), OA, DTX-1, DTX-2, yessotoxin (YTX), homoYTX, and 45-OH-YTX was compared in both instruments. This method operated in simultaneous positive and negative ionization mode. The other two mass methods operated only in negative ionization mode, one contains transitions to detect DTX-1, OA DTX-2, YTX, homoYTX, and 45-OH-YTX and the other only the transitions for the toxins under study OA, DTX-1, and DTX-2. With dependence on the equipment and mobile phase used, the amount of toxin quantified can be overestimated or underestimated, up to 44% for OA, 46% for DTX-1, and 48% for DTX-2. In addition, when a toxin was quantified using the calibration curve of the other analogues, the toxin amount obtained is different. The maximum variability was obtained when DTX-2 was quantified using either OA or a DTX-1 calibration curve. In this case, the overestimation was up to 88% using the OA calibration curve and up to 204% using the DTX-1 calibration curve. In summary, the correct quantification of DSP toxins by MS detection depends on multiple factors. Since these factors are not taken into account in a validated protocol, these results question the convenience of having MS/MS as a reference method for protecting consumers of marine toxins, moreover if toxicity of each group is considered independently and total toxicity is not summed anymore as it is in the MBA.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Espiña B, Otero P, Louzao MC, Alfonso A, Botana LM. 13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: human intestinal permeability modelling. Toxicology 2011; 287:69-75. [PMID: 21689715 DOI: 10.1016/j.tox.2011.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/30/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022]
Abstract
Human intestinal permeability prediction is an increasingly important field that helps to explain how efficient the absorption of drugs is. Spirolides, cyclic imines produced by dinoflagellates from the genera Alexandrium, can be accumulated in mollusks usually consumed by humans. These compounds exert neurological symptoms when injected intra-peritoneally in mice, although they seem to be less toxic by oral administration. In this study, we evaluate two of the most abundant analogues, 13-desmethyl spirolide C and 13,19-didesmethyl spirolide C and their ability to cross the human intestinal epithelium by the use of Caco-2 trans-epithelial permeability assays as a model. Toxin quantifications were carried out by using the liquid chromatography-tandem mass spectrometry analytical technique. We found that both compounds cross the Caco-2 epithelial barrier without altering the trans-epithelial electric resistance of the monolayer. The apparent permeability (P(app)) coefficient calculated was 18.65±1.2×10(-6)cm/s for 13-desmethyl spirolide C while a little lesser, 12.32±3.18×10(-6)cm/s, for 13,19-didesmethyl spirolide C. P(app) coefficients allow us to predict a human intestinal permeability ≥80% and ≥50%, respectively for each compound. Those results demonstrate that spirolides would be highly absorbed in the human intestine, thus being able to enter the circulatory system and to reach different organs where they could be accumulated or exert an unpredictable effect. Thus, it is necessary to carry out new studies about their pharmacokinetics and evaluate their potential acute and/or chronic effect on the human body.
Collapse
Affiliation(s)
- Begoña Espiña
- Departamento de Farmacología, Facultad de Veterinaria, Campus de Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
19
|
Otero P, Alfonso A, Alfonso C, Aráoz R, Molgó J, Vieytes MR, Botana LM. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples. Anal Chim Acta 2011; 701:200-8. [PMID: 21801889 DOI: 10.1016/j.aca.2011.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/13/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 μg kg(-1) meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|