1
|
Jadhav V, Bhagare A, Palake A, Kodam K, Dhaygude A, Kardel A, Lokhande D, Aher J. In vitro cytotoxicity assessment of biosynthesized Apis mellifera bee venom nanoparticles (BVNPs) against MCF-7 breast cancer cell lines. DISCOVER NANO 2024; 19:170. [PMID: 39402248 PMCID: PMC11473470 DOI: 10.1186/s11671-024-04123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this work, we reported the synthesis of honey bee (Apis mellifera) venom-derived nanoparticles via a hydrothermal method. This method not only ensures the preservation of the bee venom's bioactive components but also enhances their potential stability, thus broadening the scope for their applications in the biomedicinal field. The synthesis method started with the homogenization suspension of bee venom, followed by its hydrothermal process to synthesize bee venom nanoparticles (BVNPs). The successful synthesis of BVNPs was characterized using various characteristic techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Fourier Transforms Infrared (FTIR) Spectroscopy, Zeta Potential (ZP), Liquid Chromatography-Mass Spectrometry (LCMS), and Transmission Electron Microscopy (TEM). The synthesis of BVNPs through biosynthesis is shown by the visible violet-brown color development at 347 nm by UV-Vis spectroscopy. FTIR analysis revealed the presence of several functional groups in the BVNPs, including alcohols (-OH), phenols (C6H5-), carboxylic acids (-COOH), amines (-NH2, -NH-), aldehydes (-CHO), ketones (-CO-), nitriles (-CN), amides (-CO-N-), imines (-CNH-), esters (-COO-), and polysaccharides. These functional groups, as confirmed by their specific stretching and bending vibrational modes, contribute to the diverse biological activities of BVNPs, including cytotoxicity against MCF-7 breast cancer cells. The ZP of the BVNPs indicated good colloidal stability at - 45 mV. LCMS analysis confirmed the presence of major bioactive molecules, including melittin & apamin and TEM analysis shows the BVNPs exhibited a quasi-spherical shape with good dispersion, the average size was approximately 25 nm, with some being smaller (quantum dots) and interplanar spacing of 0.236 nm indicated a highly ordered crystalline structure. Moreover, the anticancer efficacy of the BVNPs was ascertained through in vitro assays against MCF-7 breast cancer cells, showing a dose-dependent cytotoxic effect. The findings of this study underscore the viability of hydrothermal synthesis in producing biologically active and structurally stable BVNPs, with a significant potential for anticancer activities.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India.
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Arun Bhagare
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Ashwini Palake
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Dhaygude
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Anant Kardel
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Dnyaneshwar Lokhande
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Jayraj Aher
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| |
Collapse
|
2
|
Laurindo LF, de Lima EP, Laurindo LF, Rodrigues VD, Chagas EFB, de Alvares Goulart R, Araújo AC, Guiguer EL, Pomini KT, Rici REG, Maria DA, Direito R, Barbalho SM. The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review. Pharmacol Res 2024; 209:107430. [PMID: 39332751 DOI: 10.1016/j.phrs.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The therapeutic potential of bee venom-derived peptides, particularly apamin and melittin, in cancer treatment has garnered significant attention as a promising avenue for advancing oncology. This systematic review examines preclinical studies highlighting the emerging role of these peptides in enhancing cancer therapies. Melittin and apamin, when conjugated with other therapeutic agents or formulated into novel delivery systems, have demonstrated improved efficacy in targeting tumor cells. Key findings indicate that melittin-based conjugates, such as polyethylene glycol (PEG)ylated versions, show potential in enhancing therapeutic outcomes and minimizing toxicity across various cancer models. Similarly, apamin-conjugated formulations have improved the efficacy of established anti-cancer drugs, contributing to enhanced targeting and reduced systemic toxicity. These developments underscore a growing interest in leveraging bee venom-derived peptides as adjuncts in cancer therapy. The integration of these peptides into treatment regimens offers a promising strategy to address current limitations in cancer treatment, such as drug resistance and off-target effects. However, comprehensive validation through clinical trials is essential to confirm their safety and effectiveness in human patients. This review highlights the global emergence of bee venom-derived peptides in cancer treatment, advocating for continued research and development to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-030, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-030, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo 17500-000, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, Brazil
| | - Durvanei Augusto Maria
- Development and innovation Laboratory, Butantan Institute, São Paulo, São Paulo 05585-000, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo 17500-000, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| |
Collapse
|
3
|
Zheng X, Liu Y, Wang R, Geng M, Liu J, Liu Z, Zhao Y. 1 H-NMR revealed pyruvate as a differentially abundant metabolite in the venom glands of Apis cerana and Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22104. [PMID: 38506277 DOI: 10.1002/arch.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between Apis cerana and Apis mellifera, proton nuclear magnetic resonance (1 H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of A. cerana and A. mellifera. Differences in the composition and abundance of major components of bee venom from A. cerana and A. mellifera were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between A. cerana and A. mellifera. Pyruvate was highly activated in 3 selected metabolic pathways in A. mellifera, being much more dominant in A. mellifera venom than in A. cerana venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongshen Wang
- Shijiazhuang Animal Disease Prevention and Control Center, Hebei, China
| | - Mingyang Geng
- Ili Kazakh Autonomous Prefecture General Animal Husbandry Station, Xinjiang Uighur Autonomous Region, China
| | - Jinliang Liu
- Beijing Shennong's Country Apiculture Specialized Cooperative, Beijing, China
| | - Zhenxing Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Yang JC, Lee J, Lim SJ, Kwak G, Park J. Molecularly Imprinted Chalcone-Branched Polyimide-Based Chemosensors with Stripe Nanopatterns for the Detection of Melittin. ACS Sens 2023; 8:2298-2308. [PMID: 37261931 DOI: 10.1021/acssensors.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a chalcone-branched polyimide (CB-PI) was synthesized by the Steglich esterification reaction for selective recognition of the toxic peptide melittin (MEL). MEL was immobilized on a nanopatterned poly(dimethylsiloxane) (PDMS) mold using a conventional surface modification technique to increase binding sites. A stripe-nanopatterned thin CB-PI film was formed on a quartz crystal (QC) substrate by simultaneously performing microcontact printing and ultraviolet (UV) light dimerization using a MEL-immobilized mold. The surface morphology changes and dimensions of the molecularly imprinted polymer (MIP) films with stripe nanopatterns (S-MIP) were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensing signals (Δf and Qe) of the S-MIP sensor were investigated upon adsorption in a 100-μL dilute plasma solution containing 30 μg/mL MEL, and its reproducibility, reuse, stability, and durability were investigated. The S-MIP sensor showed high sensitivity (5.49 mL/mg) and coefficient of determination (R2 = 0.999), and the detection limit (LOD) and the quantification limit (LOQ) were determined as 0.3 and 1.1 μg/mL, respectively. In addition, the selectivity coefficients (k*) calculated from the selectivity tests were 2.7-5.7, 2.1-4.3, and 2.8-4.6 for bovine serum albumin (BSA), immunoglobulin G (IgG), and apamin (APA), respectively. Our results indicate that the nanopatterned MIP sensors based on CB-PI demonstrate great potential as a sensing tool for the quantitative analysis of biomolecules.
Collapse
Affiliation(s)
- Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Seok Jin Lim
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Dantas CG, da Paixão AO, Nunes TLGM, Silva IJF, dos S. Lima B, Araújo AAS, de Albuquerque-Junior RLC, Gramacho KP, Padilha FF, da Costa LP, Severino P, Cardoso JC, Souto EB, Gomes MZ. Africanized Bee Venom ( Apis mellifera Linnaeus): Neuroprotective Effects in a Parkinson's Disease Mouse Model Induced by 6-hydroxydopamine. TOXICS 2022; 10:583. [PMID: 36287863 PMCID: PMC9609968 DOI: 10.3390/toxics10100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the neuroprotective effects of the Africanized bee venom (BV) and its mechanisms of action after 6-hydroxydopamine-(6-OHDA)-induced lesion in a mice model. Prior to BV treatment, mice received intrastriatal microinjections of 6-OHDA (no induced dopaminergic neuronal death) or ascorbate saline (as a control). BV was administered subcutaneously at different dosages (0.01, 0.05 or 0.1 mg·Kg-1) once every two days over a period of 3 weeks. The open field test was carried out, together with the immunohistochemical and histopathological analysis. The chemical composition of BV was also assessed, identifying the highest concentrations of apamin, phospholipase A2 and melittin. In the behavioral evaluation, the BV (0.1 mg·Kg-1) counteracted the 6-OHDA-induced decrease in crossings and rearing. 6-OHDA caused loss of dopaminergic cell bodies in the substantia nigra pars compacta and fibers in striatum (STR). Mice that received 0.01 mg·Kg-1 showed significant increase in the mean survival of dopaminergic cell bodies. Increased astrocytic infiltration occurred in the STR of 6-OHDA injected mice, differently from those of the groups treated with BV. The results suggested that Africanized BV has neuroprotective activity in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Camila G. Dantas
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Ailma O. da Paixão
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Tássia L. G. M. Nunes
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Italo J. F. Silva
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bruno dos S. Lima
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriano A. S. Araújo
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | | | - Kátia P. Gramacho
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| | - Francine F. Padilha
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Luiz P. da Costa
- Post-Graduation Program in Chemistry, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Patricia Severino
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Juliana C. Cardoso
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarete Z. Gomes
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| |
Collapse
|
6
|
Soltan-Alinejad P, Alipour H, Meharabani D, Azizi K. Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:300-313. [PMID: 35919080 PMCID: PMC9339116 DOI: 10.30476/ijms.2021.88511.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Venomous arthropods such as scorpions and bees form one of the important groups with an essential role in medical entomology. Their venom possesses a mixture of diverse compounds, such as peptides, some of which have toxic effects, and enzymatic peptide Phospholipase A2 (PLA2) with a pharmacological potential in the treatment of a wide range of diseases. Bee and scorpion venom PLA2 group III has been used in immunotherapy, the treatment of neurodegenerative and inflammatory diseases. They were assessed for antinociceptive, wound healing, anti-cancer, anti-viral, anti-bacterial, anti-parasitic, and anti-angiogenesis effects. PLA2 has been identified in different species of scorpions and bees. The anti-leishmania, anti-bacterial, anti-viral, and anti-malarial activities of scorpion PLA2 still need further investigation. Many pieces of research have been stopped in the laboratory stage, and several studies need vast investigation in the clinical phase to show the pharmacological potential of PLA2. In this review, the medical significance of PLA2 from the venom of two arthropods, namely bees and scorpions, is discussed.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Meharabani
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada,
Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
El Adham EK, Hassan AI, A Dawoud MM. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci Rep 2022; 12:2656. [PMID: 35173181 PMCID: PMC8850618 DOI: 10.1038/s41598-022-05979-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Honeybee products consist of many substances, which have long been known for their medicinal and health-promoting properties. This study set out to appraise the protective potential of Egyptian propolis (EP) and bee venom (BV) separately or combined against total body irradiation (TBI) induced oxidative injury in rats. Besides, we assessed the bioactive components in EP and BV using HPLC and UPLC/ ESI-MS analysis in the positive ion mode. The animals were subjected to a source of gamma ionizing radiation at a dose of 6 Gy. Propolis and BV were administered independently and in combination before 14 days of γ-irradiation. Liver and kidney functions were estimated besides, DNA damage index (8- OHdG) by ELISA. Antioxidants, including glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were detected. Gene expression technique investigated for BAX, BCL2, and in plasma also miR125b expression in serum of rats. Besides, the histopathological for the brain, liver, kidney, and heart were investigated. In addition, lipid peroxidation was investigated in plasma and in the previous organs. The present results provide opportunities to advance the use of bee products as promising medicinal sources.
Collapse
Affiliation(s)
- Eithar K El Adham
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt
| | - Amal I Hassan
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt.
| | - M M A Dawoud
- Radioisotopes Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Dokki, Giza, 12311, Egypt
| |
Collapse
|
8
|
Małek A, Kocot J, Mitrowska K, Posyniak A, Kurzepa J. Bee Venom Effect on Glioblastoma Cells Viability and Gelatinase Secretion. Front Neurosci 2022; 16:792970. [PMID: 35221898 PMCID: PMC8873382 DOI: 10.3389/fnins.2022.792970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe involvement of MMP-2 and MMP-9 in the pathogenesis of various kinds of cancers including glioblastoma is well documented. The evaluation of the anticancer potential of honey bee (Apis mellifera) venom (BV) consisting of the inhibition of MMP-2 and MMP-9 secretion in a glioblastoma cell culture model was the aim of the study.Methods8-MG-BA and GAMG human primary glioblastoma cell lines vs. HT-22 mouse hippocampal neuronal cells were applied for the study. The BV dose (0.5, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, and 5.0 μg/ml) and time-dependent (24, 48, 72 h) cytotoxicity was evaluated with the tetrazolium-based colorimetric assay (MTT test). MMP-2 and MMP-9 activities in the cell culture medium under different BV concentrations were determined by gelatin zymography.ResultsA dose and time-dependent BV effect on cytotoxicity of both glioblastoma cell lines and hippocampus line was observed. The weakest, but statistically important effect was exerted by BV on HT-22 cells. The greatest cytotoxic effect of BV was observed on the 8-MG-BA line, where a statistically significant reduction in viability was observed at the lowest BV dose and the shortest incubation time. The reduction of both gelatinases secretion was observed at 8-MG-BA and GAMG lines without significant effect of HT-22 cell line.ConclusionIn vitro studies indicate that BV has both cytotoxic and inhibitory effects on the secretion of MMP-2 and MMP-9 in selected lines of glioma, suggesting anticancer properties of BV.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- *Correspondence: Agata Małek,
| | - Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Kamila Mitrowska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- Jacek Kurzepa,
| |
Collapse
|
9
|
Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics (Basel) 2021; 10:antibiotics10121514. [PMID: 34943726 PMCID: PMC8698958 DOI: 10.3390/antibiotics10121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The venom from Apis mellifera intermissa, the main honey bee prevailing in Morocco, has been scarcely studied, despite its known potential for pharmacological applications. In the present work, we investigated the composition, the anti-inflammatory activity, and the venom’s cytotoxic properties from fifteen honey bee venom (HBV) samples collected in three regions: northeast, central, and southern Morocco. The chemical assessment of honey bee venom was performed using LC-DAD/ESI/MSn, NIR spectroscopy and AAS spectroscopy. The antiproliferative effect was evaluated using human tumor cell lines, including breast adenocarcinoma, non-small cell lung carcinoma, cervical carcinoma, hepatocellular carcinoma, and malignant melanoma. Likewise, we assessed the anti-inflammatory activity using the murine macrophage cell line. The study provides information on the honey bee venom subspecies’ main components, such as melittin, apamin, and phospholipase A2, with compositional variation depending on the region of collection. Contents of toxic elements such as cadmium, chromium, and plumb were detected at a concentration below 5 ppm, which can be regarded as safe for pharmaceutical use. The data presented contribute to the first study in HBV from Apis mellifera intermissa and highlight the remarkable antiproliferative and anti-inflammatory effects of HBV, suggesting it to be a candidate natural medicine to explore.
Collapse
|
10
|
Ventura CR, Wiedman GR. Substituting azobenzene for proline in melittin to create photomelittin: A light-controlled membrane active peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183759. [PMID: 34506797 DOI: 10.1016/j.bbamem.2021.183759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
In this article we present the synthesis and characterization of a new form of the membrane active peptide melittin: photomelittin. This peptide was created by substituting the proline residue in melittin for a synthetic azobenzene amino acid derivative. This azobenzene altered the membrane activity of the peptide while retaining much of the secondary structure. Furthermore, the peptide demonstrates added light-dependent activity in leakage assays. There is a 1.5-fold increase in activity when exposed to UV light as opposed to visible light. The peptides further exhibit light-dependent hemolytic activity against human red blood cells. This will enable future studies optimizing photomelittin and other azobenzene-containing membrane active peptides for uses in medicine, drug delivery, and other biotechnological applications.
Collapse
Affiliation(s)
- Cristina R Ventura
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States of America.
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States of America.
| |
Collapse
|
11
|
Burzyńska M, Piasecka-Kwiatkowska D. A Review of Honeybee Venom Allergens and Allergenicity. Int J Mol Sci 2021; 22:ijms22168371. [PMID: 34445077 PMCID: PMC8395074 DOI: 10.3390/ijms22168371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Honeybee venom is a source of proteins with allergenic properties which can result in in various symptoms, ranging from local reactions through to systematic life-threatening anaphylaxis, or even death. According to the World Allergy Organization (WAO), honeybee venom allergy is one of the most common causes of anaphylaxis. Among the proteins present in honeybee venom, 12 protein fractions were registered by the World Health Organization’s Allergen Nomenclature Sub-Committee (WHO/IUIS) as allergenic. Most of them are highly immunogenic glycoproteins that cross-react with IgE and, as a consequence, may give false positive results in allergy diagnosis. Allergenic fractions are different in terms of molecular weight and biological activity. Eight of these allergenic fractions have also been identified in honey. This explains frequent adverse reactions after consuming honey in people allergic to venom and sheds new light on the causes of allergic symptoms in some individuals after honey consumption. At the same time, it also indicates the possibility of using honey as a natural source of allergen in specific immunotherapy.
Collapse
|
12
|
Huang S, Wang J, Guo Z, Wang Y, Liu C. Quantitative Measurement of Melittin in Asian Honeybee Venom Using a New Method Including UPLC-QqTOF-MS. Toxins (Basel) 2020; 12:toxins12070437. [PMID: 32635485 PMCID: PMC7404999 DOI: 10.3390/toxins12070437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Asian honeybee venom is widely used in traditional oriental medicine. Melittin is the main component of Asian honeybee venom. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) method was used for accurate qualitative and quantitative analyses of melittin in Asian honeybee venom. The results showed that the dynamic linear range of melittin was from 0.094 to 20 μg/mL, and the limit of quantification was 0.3125 μg/mL. The spiking recovery of melittin in honeybee venom ranged from 84.88% to 93.05%. Eighteen Asian honeybee venom samples in eighteen batches were collected from two different zones of China, and their melittin contents were measured. The contents of melittin in Asian honeybee venom samples was 33.9–46.23% of dry weight. This method proved a useful tool for the rapid evaluation of the authenticity and quality of Asian honeybee venom in terms of the melittin contents, and will contribute to a broader understanding of Asian honeybee venom.
Collapse
|
13
|
Li J, Fernández-Millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr Top Med Chem 2020; 20:1238-1263. [DOI: 10.2174/1568026620666200303122626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Background:Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.Methods:In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.Results and Conclusion:We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
14
|
Zhang W, Wang X, Yang S, Niu Q, Wu L, Li Y, Zhou J. Simultaneous quantification of five biogenic amines based on LC-MS/MS and its application in honeybee venom from different subspecies. Biomed Chromatogr 2019; 34:e4740. [PMID: 31733148 DOI: 10.1002/bmc.4740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022]
Abstract
The use of honeybee venom in traditional medicine is increasing due to its unexpected beneficial effects in the treatment of diseases. In this study, a simple and environmentally friendly sample preparation procedure was developed to quantify five biogenic amines-histamine, 5-hydroxytryptamine, dopamine, adrenaline, and noradrenaline-in honeybee venom using high-performance liquid chromatography tandem mass spectrometry. The instrument and sample preparation method were optimized to achieve stable, sensitive, and accurate quantification of the five biogenic amines. The peak purities of five biogenic amines in bee venom were examined using a diode array detector to ensure that endogenous impurities will not interfere with biogenic amines during the chromatographic separation procedure. The correlation coefficient of each compound was higher than 0.998 in the range of 0.5-1000 ng/mL. The limits of detection and quantification of the developed method ranged between 0.09 and 0.17, and 0.3 and 0.59 μg/g, respectively. The average recoveries of spiked biogenic amines with different concentrations were higher than 70.95%, and the intra- and intermediate-day precisions were lower than 7.51% and 10.17%, respectively. The carry-over between each injection and the stability of the target analytes were also evaluated to ensure the effectiveness of this method. The data obtained are presented in various formats, including boxplot, heat map, and principal component analysis diagram, to visualize the differences in the biogenic amine contents of the honeybee venoms from different subspecies. This method hopes to provide the opportunity to distinguish the bee venom produced by different subspecies.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinran Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, China.,Laboratory of Risk Assessment for Quality and Safety of Honeybee Products, Ministry of Agriculture, Beijing, China.,Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture, Beijing, China
| | - Qingsheng Niu
- Apicultural Science Institute of Jilin Province, Jilin, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, China.,Laboratory of Risk Assessment for Quality and Safety of Honeybee Products, Ministry of Agriculture, Beijing, China.,Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture, Beijing, China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, China.,Laboratory of Risk Assessment for Quality and Safety of Honeybee Products, Ministry of Agriculture, Beijing, China.,Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture, Beijing, China
| |
Collapse
|
15
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Ramirez L, Shekhtman A, Pande J. Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin. Biochemistry 2018; 57:2775-2785. [PMID: 29668274 DOI: 10.1021/acs.biochem.8b00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled (15N and 13C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.
Collapse
Affiliation(s)
- Lisa Ramirez
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| | - Alexander Shekhtman
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| | - Jayanti Pande
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| |
Collapse
|
17
|
Somwongin S, Chantawannakul P, Chaiyana W. Antioxidant activity and irritation property of venoms from Apis species. Toxicon 2018; 145:32-39. [PMID: 29499244 DOI: 10.1016/j.toxicon.2018.02.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 01/31/2023]
Abstract
Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC1) of 0.35 ± 0.02 mM FeSO4/mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using as cosmetic ingredients since it possessed the highest antioxidant activity with no irritation. This study is the first report to compare the bee venom extracts from different Apis species and display their potential application of bee venom extracts in cosmetic products.
Collapse
Affiliation(s)
- Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; International College of Digital Innovation, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
18
|
Zarrinnahad H, Mahmoodzadeh A, Hamidi MP, Mahdavi M, Moradi A, Bagheri KP, Shahbazzadeh D. Apoptotic Effect of Melittin Purified from Iranian Honey Bee Venom on Human Cervical Cancer HeLa Cell Line. Int J Pept Res Ther 2017; 24:563-570. [PMID: 30416405 PMCID: PMC6208649 DOI: 10.1007/s10989-017-9641-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Melittin, an amphipathic 26-residue peptide, is the main component of honey bee venom. Studies have been demonstrated that melittin has an inhibitory effect on proliferation of cancer cells. However, the precise mechanism of action is not completely understood. In the present study we have shown that purified melittin from Iranian honey bee venom shows anti-cancer effects on human cervical cancer cell line through induction of apoptosis. The venom was collected from Iranian honey bee (Apis mellifera meda) and melittin isolated using reversed phase HPLC. Biological activity of melittin was analyzed by hemolytic test on human red blood cells. In order to investigate whether melittin inhibits proliferation of cervical cancer cells, the viability of the melittin treated HeLa cell line was measured via MTT assay. Finally, cell death analysis was performed using Propidum iodide and Annexin V-FITC dual staining. The results showed that the half hemolytic concentration (HD50) induced by mellitin was 0.5 µg/ml in free FBS solution. IC50 obtained after 12 h at 1.8 µg/ml by MTT assay. According to flow cytometric analysis, melittin induced apoptosis at concentrations more than 1 µg/ml. These results suggest that melittin induces apoptotic cell death in cervical cancerous cells as observed by flow cytometric assay. It is concluded that melittin could be regarded as a potential candidate in future studies to discovery of new anticancer agents.
Collapse
Affiliation(s)
- Hannaneh Zarrinnahad
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mahmoodzadeh
- Biochemistry Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Parviz Hamidi
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Moradi
- International Campus of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Kim WH, An HJ, Kim JY, Gwon MG, Gu H, Lee SJ, Park JY, Park KD, Han SM, Kim MK, Park KK. Apamin inhibits TNF-α- and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes. Pharmacol Rep 2017; 69:1030-1035. [PMID: 28958612 DOI: 10.1016/j.pharep.2017.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is identified by an increase in infiltrations of several inflammatory cells including type 2 helper (Th2) lymphocytes. Th2-related chemokines such as thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), and pro-inflammatory cytokines including interleukin (IL)-1β and IL-6 are considered to play a crucial role in AD. Tumor necrosis factor (TNF)-α- and interferon (IFN)-γ induce the inflammatory condition through production of TARC, MDC, IL-1β and IL-6, and activations of related transcription factors, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT) in keratinocytes. Apamin, a peptide component of bee venom, has been reported its beneficial activities in various diseases. However, anti-inflammatory effects of apamin on inflammatory condition in keratinocytes have not been explored. Therefore, the present study aimed to demonstrate the anti-inflammatory effect of apamin on TNF-α- and IFN-γ-induced inflammatory condition in keratinocytes. METHODS HaCaT was used as human keratinocytes cell line. Cell Counting Kit-8 was performed to measure a cytotoxicity of apamin. The effects of apamin on TNF-α-/IFN-γ-induced inflammatory condition were determined by real-time PCR and Western blot analysis. Further, NF-κB signaling pathways, STAT1, and STAT3 were analyzed by Western blot and immunofluorescence. RESULTS Apamin ameliorated the inflammatory condition through suppression of Th2-related chemokines and pro-inflammatory cytokines. Further, apamin down-regulated the activations of NF-κB signaling pathways and STATs in HaCaT cells. CONCLUSIONS These results suggest that apamin has therapeutic effect on AD through improvement of inflammatory condition.
Collapse
Affiliation(s)
- Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Ji Y Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Kyung-Duck Park
- Department of Dermatology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Republic of Korea.
| | - Min-Kyung Kim
- Department of Pathology, College of Medicine, Dongguk University, 123, Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| |
Collapse
|
20
|
Erol K, Köse K, Güngüneş H, Köse DA. Use of amino acid-based polymeric material for isolation of a protein from poison. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry N, Tusiimire J, Gray A, Watson D, Ferro V. Natural Vaccine Adjuvants and Immunopotentiators Derived From Plants, Fungi, Marine Organisms, and Insects. IMMUNOPOTENTIATORS IN MODERN VACCINES 2017. [PMCID: PMC7148613 DOI: 10.1016/b978-0-12-804019-5.00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunopotentiators derived from different natural sources are under investigation with varying success. This chapter gives an overview of developments from plants, fungi, marine organisms, and insects. Plant-derived immune stimulators consist of a diverse range of small molecules or large polysaccharides. Notable examples that have been assessed in both preclinical and clinical trials include saponins, tomatine, and inulin. Similarly, fungi produce a range of potential candidate molecules, with β-glucans showing the most promise. Other complex molecules that have established adjuvant activity include α-galactosylceramide (originally obtained from a marine sponge), chitosan (commonly produced from chitin from shrimps), and peptides (found in bee venom). Some organisms, for example, endophytic fungi and bees, produce immunostimulants using compounds obtained from plants. The main challenges facing this type of research and tools being developed to overcome them are examined.
Collapse
Affiliation(s)
- N. Woods
- University of Strathclyde, Glasgow, Scotland
| | | | | | - J. Igoli
- University of Strathclyde, Glasgow, Scotland,University of Agriculture, Makurdi, Benue State, Nigeria
| | | | | | - A.I. Gray
- University of Strathclyde, Glasgow, Scotland
| | - D.G. Watson
- University of Strathclyde, Glasgow, Scotland
| | - V.A. Ferro
- University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
22
|
O’Brien J, Lee SH, Onogi S, Shea KJ. Engineering the Protein Corona of a Synthetic Polymer Nanoparticle for Broad-Spectrum Sequestration and Neutralization of Venomous Biomacromolecules. J Am Chem Soc 2016; 138:16604-16607. [DOI: 10.1021/jacs.6b10950] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey O’Brien
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shih-Hui Lee
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shunsuke Onogi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
23
|
You CE, Moon SH, Lee KH, Kim KH, Park CW, Seo SJ, Cho SH. Effects of Emollient Containing Bee Venom on Atopic Dermatitis: A Double-Blinded, Randomized, Base-Controlled, Multicenter Study of 136 Patients. Ann Dermatol 2016; 28:593-599. [PMID: 27746639 PMCID: PMC5064189 DOI: 10.5021/ad.2016.28.5.593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/05/2016] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a common, complex disease that follows a chronic relapsing course and significantly affects the quality of life of patients. Skin barrier dysfunction and inflammatory processes induce and aggravate this skin condition. Proper use of an emollient for hydration is a keystone of AD treatment. Bee venom is known to have anti-inflammatory effects and has been widely used in traditional medicine to treat various inflammatory disorders. OBJECTIVE To find out the beneficial effect of an emollient containing bee venom in the treatment of patients with AD. METHODS This study included 136 patients with AD who were randomized to receive either an emollient containing bee venom and silk-protein or a vehicle that was identical except for the bee venom for 4 weeks. The patients were instructed to apply the emollient twice daily on their entire body and not to use other medications, including topicals, during the course of the study. The eczema area and severity index (EASI) score, transepidermal water loss, and visual analogue scale (VAS) score of itching were evaluated at the first visit and after 2 and 4 weeks. The investigator global assessment was evaluated at 2 and 4 weeks after the application of emollient containing bee venom or vehicle. RESULTS Patients applying emollient containing bee venom showed significantly lower EASI score and VAS value compared to patients applying emollient without bee venom. CONCLUSION Emollient containing bee venom is a safe and effective option for patients with AD.
Collapse
Affiliation(s)
- Chung Eui You
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Seok Hoon Moon
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Kwang Hoon Lee
- Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Seong Joon Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sang Hyun Cho
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
24
|
Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS. Vaccines (Basel) 2016; 4:vaccines4020011. [PMID: 27104574 PMCID: PMC4931628 DOI: 10.3390/vaccines4020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023] Open
Abstract
The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample.
Collapse
|
25
|
|
26
|
Zhou J, Qi Y, Ritho J, Zhang Y, Zheng X, Wu L, Li Y, Sun L. Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Dong J, Ying B, Huang S, Ma S, Long P, Tu X, Yang W, Wu Z, Chen W, Miao X. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:139-43. [PMID: 26319802 DOI: 10.1016/j.jchromb.2015.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Melittin is the major toxin peptide in bee venom, which has diverse biological effects. In the present study, melittin was separated by reverse-phase high-performance liquid chromatography, and was then detected using intrinsic fluorescence signal of tryptophan residue. The accuracy, linearity, limit of quantitation (LOQ), intra-day and inter-day precision of the method were carefully validated in this study. Results indicate that the intrinsic fluorescence signal of melittin has linear range from 0.04μg/mL to 20μg/mL with LOQ of 0.04μg/mL. The recovery range of spiked samples is between 81.93% and 105.25%. The precision results are expressed as relative standard deviation (RSD), which is in the range of 2.1-7.4% for intra-day precision and 6.2-10.8% for inter-day precision. Because of the large linear dynamic range and the high sensitivity, intrinsic fluorescence detection (IFD) can be used for analyzing melittin contents in individual venom sac of honeybee (Apis mellifera). The detected contents of melittin in individual bee venom sac are 0.18±0.25μg for one-day old honeybees (n=30), and 114.98±43.51μg for 25-day old (n=30) honeybees, respectively. Results indicate that there is large bee-to-bee difference in melittin contents. The developed method can be useful for discovering the melittin related honeybee biology information, which might be covered in the complex samples.
Collapse
Affiliation(s)
- Jiangtao Dong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Bihua Ying
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Shaokang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Shuangqin Ma
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Peng Long
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Wenchao Yang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Zhenhong Wu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China
| | - Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China.
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, China; Engineering Research Center of Bee Products Process and Application, Ministry of Education, China.
| |
Collapse
|
28
|
An LCMS method for the assay of melittin in cosmetic formulations containing bee venom. Anal Bioanal Chem 2015; 407:3627-35. [DOI: 10.1007/s00216-015-8578-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 01/26/2023]
|
29
|
Al-Ani I, Zimmermann S, Reichling J, Wink M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:245-55. [PMID: 25765829 DOI: 10.1016/j.phymed.2014.11.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 05/25/2023]
Abstract
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens.
Collapse
Affiliation(s)
- Issam Al-Ani
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364 Heidelberg, Germany; Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, INF 324 Heidelberg, Germany
| | - Jürgen Reichling
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364 Heidelberg, Germany.
| |
Collapse
|
30
|
A sensitive quantification of the peptide apidaecin 1 isoforms in single bee tissues using a weak cation exchange pre-separation and nanocapillary liquid chromatography coupled with mass spectrometry. J Chromatogr A 2014; 1374:134-144. [DOI: 10.1016/j.chroma.2014.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
|