1
|
Karimian Shamsabadi M, Jia X. A fluorescence polarization assay for high-throughput screening of inhibitors against HIV-1 Nef-mediated CD4 downregulation. J Biol Chem 2024; 300:107528. [PMID: 38960038 PMCID: PMC11325777 DOI: 10.1016/j.jbc.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic inhibition of the viral protein Nef is an intriguing direction of antiretroviral drug discovery-it may revitalize immune mechanisms to target, and potentially clear, HIV-1-infected cells. Of the many cellular functions of Nef, the most conserved is the downregulation of surface CD4, which takes place through Nef hijacking the clathrin adaptor protein complex 2 (AP2)-dependent endocytosis. Our recent crystal structure has unraveled the molecular details of the CD4-Nef-AP2 interaction. Guided by the new structural knowledge, we have developed a fluorescence polarization-based assay for inhibitor screening against Nef's activity on CD4. In our assay, AP2 is included along with Nef to facilitate the proper formation of the CD4-binding pocket and a fluorescently labeled CD4 cytoplasmic tail binds competently to the Nef-AP2 complex generating the desired polarization signal. The optimized assay has a good signal-to-noise ratio, excellent tolerance of dimethylsulfoxide and detergent, and the ability to detect competitive binding at the targeted Nef pocket, making it suitable for high-throughput screening.
Collapse
Affiliation(s)
- Mohammad Karimian Shamsabadi
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA; The Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Xiaofei Jia
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA; The Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA.
| |
Collapse
|
2
|
Manoharan GB, Kopra K, Eskonen V, Härmä H, Abankwa D. High-throughput amenable fluorescence-assays to screen for calmodulin-inhibitors. Anal Biochem 2019; 572:25-32. [PMID: 30825429 DOI: 10.1016/j.ab.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022]
Abstract
The KRAS gene is highly mutated in human cancers and the focus of current Ras drug development efforts. Recently the interface between the C-terminus of K-Ras and calmodulin (CaM) was proposed as a target site to block K-Ras driven cancer cell stemness. We therefore aimed at developing a high-throughput amenable screening assay to identify novel CaM-inhibitors as potential K-Ras stemness-signaling disruptors. A modulated time-resolved Förster resonance energy transfer (mTR-FRET)-assay was developed and benchmarked against an identically designed fluorescence anisotropy (FA)-assay. In both assays, two CaM-binding peptides were labeled with Eu(III)-chelate or fluorescein and used as single-label reporter probes that were displaced from CaM upon competitor binding. Thus, peptidic and small molecule competitors with nanomolar to micromolar affinities to CaM could be detected, including a peptide that was derived from the C-terminus of K-Ras. In order to detect CaM-residue specific covalent inhibitors, a cell lysate-based Förster resonance energy transfer (FRET)-assay was furthermore established. This assay enabled us to measure the slow, residue-specific, covalent inhibition by ophiobolin A in the presence of other endogenous proteins. In conclusion, we have developed a panel of fluorescence-assays that allows identification of conventional and covalent CaM-inhibitors as potential disruptors of K-Ras driven cancer cell stemness.
Collapse
Affiliation(s)
- Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Kari Kopra
- Materials Chemistry and Chemical Analysis, University of Turku, 20500, Turku, Finland
| | - Ville Eskonen
- Materials Chemistry and Chemical Analysis, University of Turku, 20500, Turku, Finland
| | - Harri Härmä
- Materials Chemistry and Chemical Analysis, University of Turku, 20500, Turku, Finland
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
3
|
Velázquez-López I, León-Cruz E, Pardo JP, Sosa-Peinado A, González-Andrade M. Development of new hCaM-Alexa Fluor ® biosensors for a wide range of ligands. Anal Biochem 2017; 516:13-22. [PMID: 27744023 DOI: 10.1016/j.ab.2016.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/17/2022]
Abstract
Eight new fluorescent biosensors of human calmodulin (hCaM) using Alexa Fluor® 350, 488, 532, and 555 dyes were constructed. These biosensors are thermodynamically stable, functional, and highly sensitive to ligands of the CaM. They resolve the problem of CaM ligands with similar spectroscopic properties to the intrinsic and extrinsic fluorophores of other biosensors previously reported. Additionally, they can be used in studies of protein-protein interaction through Förster resonance energy transfer (FRET). The variation in Tm (range 78.07-81.47 °C; 79.05 to WT) is no larger than two degrees in all cases in regards to CaM WT. The Kds calculated with all biosensors for CPZ and BIMI (a new inhibitor of CaM) are in the range of 0.45-1.86 and 0.69-1.54 μm respectively. All biosensors retain their ability to activate Calcineurin about 70%. Structural models built "in silico" show their possible conformation taking the fluorophores in protein thus we can predict system stability. Finally, these new biosensors represent a biotechnological development applied to an analytical problem, which aims to determine accurately the affinity of inhibitors of CaM without possible interference, to be put forward as possible drugs related to CaM.
Collapse
Affiliation(s)
- I Velázquez-López
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P 04510, Mexico
| | - E León-Cruz
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P 04510, Mexico
| | - J P Pardo
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P 04510, Mexico
| | - A Sosa-Peinado
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P 04510, Mexico
| | - M González-Andrade
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P 04510, Mexico.
| |
Collapse
|
4
|
Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, Coussens NP. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 2016; 4:022001. [PMID: 28809163 DOI: 10.1088/2050-6120/4/2/022001] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.
Collapse
Affiliation(s)
- Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17:ijms17020144. [PMID: 26821017 PMCID: PMC4783878 DOI: 10.3390/ijms17020144] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/16/2023] Open
Abstract
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.
Collapse
Affiliation(s)
- Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yi Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yuan-Ling Xia
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Shi-Meng Ai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Department of Applied Mathematics, Yunnan Agricultural University, Kunming 650201, China.
| | - Jing Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Peng Sang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
6
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms using small temperature oscillations and a single tagged species. J Chem Phys 2015; 142:174108. [PMID: 25956091 DOI: 10.1063/1.4919632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to identify two-step chemical mechanisms, we propose a method based on a small temperature modulation and on the analysis of the concentration oscillations of a single tagged species involved in the first step. The thermokinetic parameters of the first reaction step are first determined. Then, we build test functions that are constant only if the chemical system actually possesses some assumed two-step mechanism. Next, if the test functions plotted using experimental data are actually even, the mechanism is attributed and the obtained constant values provide the rate constants and enthalpy of reaction of the second step. The advantage of the protocol is to use the first step as a probe reaction to reveal the dynamics of the second step, which can hence be relieved of any tagging. The protocol is anticipated to apply to many mechanisms of biological relevance. As far as ligand binding is considered, our approach can address receptor conformational changes or dimerization as well as competition with or modulation by a second partner. The method can also be used to screen libraries of untagged compounds, relying on a tracer whose concentration can be spectroscopically monitored.
Collapse
Affiliation(s)
- F Closa
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| | - C Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, route de Nozay, 91460 Marcoussis, France
| | - L Jullien
- Department of Chemistry, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005 Paris, France
| | - A Lemarchand
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| |
Collapse
|
7
|
Arai T, Uehata M, Akatsuka H, Kamiyama T. A quantitative analysis to unveil specific binding proteins for bioactive compounds. Protein Eng Des Sel 2013; 26:249-54. [DOI: 10.1093/protein/gzs103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Abstract
IMPORTANCE OF THE FIELD Fluorescence polarization (FP) is a homogeneous method that allows rapid and quantitative analysis of diverse molecular interactions and enzyme activities. This technique has been widely utilized in clinical and biomedical settings, including the diagnosis of certain diseases and monitoring therapeutic drug levels in body fluids. Recent developments in the field have been symbolized by the facile adoption of FP in high-throughput screening and small molecule drug discovery of an increasing range of target classes. AREAS COVERED IN THIS REVIEW The article provides a brief overview of the theoretical foundation of FP, followed by updates on recent advancements in its application for various drug target classes, including GPCRs, enzymes and protein-protein interactions. The strengths and weaknesses of this method, practical considerations in assay design, novel applications and future directions are also discussed. WHAT THE READER WILL GAIN The reader is informed of the most recent advancements and future directions of FP application to small molecule screening. TAKE HOME MESSAGE In addition to its continued utilization in high-throughput screening, FP has expanded into new disease and target areas and has been marked by increased use of labeled small molecule ligands for receptor-binding studies.
Collapse
Affiliation(s)
- Wendy A. Lea
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, U.S.A
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, U.S.A
| |
Collapse
|