1
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity. Molecules 2020; 25:molecules25235698. [PMID: 33287192 PMCID: PMC7730986 DOI: 10.3390/molecules25235698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.
Collapse
|
5
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
6
|
Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Appl Environ Microbiol 2019; 85:AEM.02970-18. [PMID: 30635385 DOI: 10.1128/aem.02970-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
A two-domain GH10 xylanase-encoding gene (amor_gh10a) was discovered from a metagenomic data set, generated after in situ incubation of a lignocellulosic substrate in hot sediments on the sea floor of the Arctic Mid-Ocean Ridge (AMOR). AMOR_GH10A comprises a signal peptide, a carbohydrate-binding module belonging to a previously uncharacterized family, and a catalytic glycosyl hydrolase (GH10) domain. The enzyme shares the highest sequence identity (42%) with a hypothetical protein from a Verrucomicrobia bacterium, and its GH10 domain shares low identity (24 to 28%) with functionally characterized xylanases. Purified AMOR_GH10A showed thermophilic and halophilic properties and was active toward various xylans. Uniquely, the enzyme showed high activity toward amorphous cellulose, glucomannan, and xyloglucan and was more active toward cellopentaose than toward xylopentaose. Binding assays showed that the N-terminal domain of this broad-specificity GH10 binds strongly to amorphous cellulose, as well as to microcrystalline cellulose, birchwood glucuronoxylan, barley β-glucan, and konjac glucomannan, confirming its classification as a novel CBM (CBM85).IMPORTANCE Hot springs at the sea bottom harbor unique biodiversity and are a promising source of enzymes with interesting properties. We describe the functional characterization of a thermophilic and halophilic multidomain xylanase originating from the Arctic Mid-Ocean Ridge vent system, belonging to the well-studied family 10 of glycosyl hydrolases (GH10). This xylanase, AMOR_GH10A, has a surprisingly wide substrate range and is more active toward cellopentaose than toward xylopentaose. This substrate promiscuity is unique for the GH10 family and could prove useful in industrial applications. Emphasizing the versatility of AMOR_GH10A, its N-terminal domain binds to both xylans and glycans, while not showing significant sequence similarities to any known carbohydrate-binding module (CBM) in the CAZy database. Thus, this N-terminal domain lays the foundation for the new CBM85 family.
Collapse
|
7
|
Ladner-Keay CL, Ross L, Perez-Pineiro R, Zhang L, Bjorndahl TC, Cashman N, Wishart DS. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds. Prion 2018; 12:280-300. [PMID: 30223704 PMCID: PMC6277192 DOI: 10.1080/19336896.2018.1525254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
Abstract
Prion diseases are caused by the conversion of normal cellular prion proteins (PrP) into lethal prion aggregates. These prion aggregates are composed of proteinase K (PK) resistant fibrils and comparatively PK-sensitive oligomers. Currently there are no anti-prion pharmaceuticals available to treat or prevent prion disease. Methods of discovering anti-prion molecules rely primarily on relatively complex cell-based, tissue slice or animal-model assays that measure the effects of small molecules on the formation of PK-resistant prion fibrils. These assays are difficult to perform and do not detect the compounds that directly inhibit oligomer formation or alter prion conversion kinetics. We have developed a simple cell-free method to characterize the impact of anti-prion fibril compounds on both the oligomer and fibril formation. In particular, this assay uses shaking-induced conversion (ShIC) of recombinant PrP in a 96-well format and resolution enhanced native acidic gel electrophoresis (RENAGE) to generate, assess and detect PrP fibrils in a high throughput fashion. The end-point PrP fibrils from this assay can be further characterized by PK analysis and negative stain transmission electron microscopy (TEM). This cell-free, gel-based assay generates metrics to assess anti-prion fibril efficacy and kinetics. To demonstrate its utility, we characterized the action of seven well-known anti-prion molecules: Congo red, curcumin, GN8, quinacrine, chloropromazine, tetracycline, and TUDCA (taurourspdeoxycholic acid), as well as four suspected anti-prion compounds: trans-resveratrol, rosmarinic acid, myricetin and ferulic acid. These findings suggest that this in vitro assay could be useful in identifying and comprehensively assessing novel anti-prion fibril compounds. Abbreviations: PrP, prion protein; PK, proteinase K; ShIC, shaking-induced conversion; RENAGE, resolution enhanced native acidic gel electrophoresis; TEM, transmission electron microscopy; TUDCA, taurourspdeoxycholic acid; BSE, bovine spongiform encephalopathy; CWD, chronic wasting disease; CJD, Creutzfeldt Jakob disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; FFI, fatal familial insomnia; PrPc, cellular prion protein; recPrPC, recombinant monomeric prion protein; PrPSc, infectious particle of misfolded prion protein; RT-QuIC, real-time quaking-induced conversion; PMCA, Protein Misfolding Cyclic Amplification; LPS, lipopolysaccharide; EGCG, epigallocatechin gallate; GN8, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide; DMSO, dimethyl sulfoxide; ScN2A, scrapie infected neuroblastoma cells; IC50, inhibitory concentration for 50% reduction; recMoPrP 23-231, recombinant full-length mouse prion protein residues 23-231; EDTA; PICUP, photo-induced cross-linking of unmodified protein; BSA, bovine serum albumin;; PMSF, phenylmethanesulfonyl fluoride.
Collapse
Affiliation(s)
| | - Li Ross
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Trent C. Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Neil Cashman
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Leone S, Fonderico J, Melchiorre C, Carpentieri A, Picone D. Structural effects of methylglyoxal glycation, a study on the model protein MNEI. Mol Cell Biochem 2018; 451:165-171. [PMID: 30014221 DOI: 10.1007/s11010-018-3403-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
The reaction of free amino groups in proteins with reactive carbonyl species, known as glycation, leads to the formation of mixtures of products, collectively referred to as advanced glycation endproducts (AGEs). These compounds have been implicated in several important diseases, but their role in pathogenesis and clinical symptoms' development is still debated. Particularly, AGEs are often associated to the formation of amyloid deposits in conformational diseases, such as Alzheimer's and Parkinson's disease, and it has been suggested that they might influence the mechanisms and kinetics of protein aggregation. We here present the characterization of the products of glycation of the model protein MNEI with methylglyoxal and their effect on the protein structure. We demonstrate that, despite being an uncontrolled process, glycation occurs only at specific residues of the protein. Moreover, while not affecting the protein fold, it alters its shape and hydrodynamic properties and increases its tendency to fibrillar aggregation. Our study opens the way to in deep structural investigations to shed light on the complex link between protein post-translational modifications, structure, and stability.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| | - Jole Fonderico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
9
|
Glaves JP, Ladner-Keay CL, Bjorndahl TC, Wishart DS, Sykes BD. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:982-988. [PMID: 29935976 DOI: 10.1016/j.bbapap.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of β-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90-231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H-15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90-114) and C-terminal regions (residues 226-231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carol L Ladner-Keay
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Trent C Bjorndahl
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2M9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada.
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
10
|
pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis. Biochim Biophys Acta Gen Subj 2018; 1862:808-815. [DOI: 10.1016/j.bbagen.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022]
|
11
|
Ladner-Keay CL, LeVatte M, Wishart DS. Role of polysaccharide and lipid in lipopolysaccharide induced prion protein conversion. Prion 2017; 10:466-483. [PMID: 27906600 PMCID: PMC5161299 DOI: 10.1080/19336896.2016.1254857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conversion of native cellular prion protein (PrPc) from an α-helical structure to a toxic and infectious β-sheet structure (PrPSc) is a critical step in the development of prion disease. There are some indications that the formation of PrPSc is preceded by a β-sheet rich PrP (PrPβ) form which is non-infectious, but is an intermediate in the formation of infectious PrPSc. Furthermore the presence of lipid cofactors is thought to be critical in the formation of both intermediate-PrPβ and lethal, infectious PrPSc. We previously discovered that the endotoxin, lipopolysaccharide (LPS), interacts with recombinant PrPc and induces rapid conformational change to a β-sheet rich structure. This LPS induced PrPβ structure exhibits PrPSc-like features including proteinase K (PK) resistance and the capacity to form large oligomers and rod-like fibrils. LPS is a large, complex molecule with lipid, polysaccharide, 2-keto-3-deoxyoctonate (Kdo) and glucosamine components. To learn more about which LPS chemical constituents are critical for binding PrPc and inducing β-sheet conversion we systematically investigated which chemical components of LPS either bind or induce PrP conversion to PrPβ. We analyzed this PrP conversion using resolution enhanced native acidic gel electrophoresis (RENAGE), tryptophan fluorescence, circular dichroism, electron microscopy and PK resistance. Our results indicate that a minimal version of LPS (called detoxified and partially de-acylated LPS or dLPS) containing a portion of the polysaccharide and a portion of the lipid component is sufficient for PrP conversion. Lipid components, alone, and saccharide components, alone, are insufficient for conversion.
Collapse
Affiliation(s)
- Carol L Ladner-Keay
- a Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Marcia LeVatte
- a Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - David S Wishart
- a Department of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada.,b Department of Computing Science , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
12
|
Lin K, Yu Z, Yu Y, Liao X, Huang P, Guo C, Lin D. Distinct effects of Cu2+-binding on oligomerization of human and rabbit prion proteins. Acta Biochim Biophys Sin (Shanghai) 2015; 47:842-50. [PMID: 26350098 DOI: 10.1093/abbs/gmv081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
The cellular prion protein (PrP(C)) is a kind of cell-surface Cu(2+)-binding glycoprotein. The oligomerization of PrP(C) is highly related to transmissible spongiform encephalopathies (TSEs). Cu(2+) plays a vital role in the oligomerization of PrP(C), and participates in the pathogenic process of TSE diseases. It is expected that Cu(2+)-binding has different effects on the oligomerization of TSE-sensitive human PrP(C) (HuPrP(C)) and TSE-resistant rabbit PrP(C) (RaPrP(C)). However, the details of the distinct effects remain unclear. In the present study, we measured the interactions of Cu(2+) with HuPrP(C) (91-230) and RaPrP(C) (91-228) by isothermal titration calorimetry, and compared the effects of Cu(2+)-binding on the oligomerization of both PrPs. The measured dissociation constants (Kd) of Cu(2+) were 11.1 ± 2.1 μM for HuPrP(C) and 21.1 ± 3.1 μM for RaPrP(C). Cu(2+)-binding promoted the oligomerization of HuPrP(C) more significantly than that of RaPrP(C). The far-ultraviolet circular dichroism spectroscopy experiments showed that Cu(2+)-binding induced more significant secondary structure change and increased more β-sheet content for HuPrP(C) compared with RaPrP(C). Moreover, the urea-induced unfolding transition experiments indicated that Cu(2+)-binding decreased the conformational stability of HuPrP(C) more distinctly than that of RaPrP(C). These results suggest that RaPrP(C) possesses a low susceptibility to Cu(2+), potentially weakening the risk of Cu(2+)-induced TSE diseases. Our work sheds light on the Cu(2+)-promoted oligomerization of PrP(C), and may be helpful for further understanding the TSE-resistance of rabbits.
Collapse
Affiliation(s)
- Kejiang Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| | - Ziyao Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China
| | - Yuanhui Yu
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinli Liao
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei Huang
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 21009, China High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
14
|
Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Analysis of Interactions between the Epidermal Growth Factor Receptor and Soluble Ligands on the Basis of Single-Molecule Diffusivity in the Membrane of Living Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Analysis of Interactions between the Epidermal Growth Factor Receptor and Soluble Ligands on the Basis of Single-Molecule Diffusivity in the Membrane of Living Cells. Angew Chem Int Ed Engl 2015; 54:7028-32. [DOI: 10.1002/anie.201500871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/01/2015] [Indexed: 11/06/2022]
|
16
|
Wang G, Wang M, Li C. The Unexposed Secrets of Prion Protein Oligomers. J Mol Neurosci 2015; 56:932-937. [PMID: 25823438 DOI: 10.1007/s12031-015-0546-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
According to the "protein-only" hypothesis, the misfolding and conversion of host-derived cellular prion protein (PrP(C)) into pathogenically misfolded PrP are believed to be the key procedure in the pathogenesis of prion diseases. Intermediate, soluble oligomeric prion protein (PrP) aggregates were considered a critical process for prion diseases. Several independent studies on PrP oligomers gained insights into oligomers' formation, biophysical and biochemical characteristics, structure conversion, and neurotoxicity. PrP oligomers are rich in β-sheet structure and slightly resistant to proteinase K digestion. PrP oligomers exhibited more neurotoxicity and induced neuronal apoptosis in vivo and/or in vitro. In this review, we summarized recent studies regarding PrP oligomers and the relationship between misfolded PrP aggregates and neuronal death in the course of prion diseases.
Collapse
Affiliation(s)
- Gailing Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China.
| | - Mingcheng Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| | - Chuanfeng Li
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| |
Collapse
|
17
|
Ladner-Keay CL, Griffith BJ, Wishart DS. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils. PLoS One 2014; 9:e98753. [PMID: 24892647 PMCID: PMC4043794 DOI: 10.1371/journal.pone.0098753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP) is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl), high temperature, phospholipids, or mildly acidic conditions (pH 4). Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to β-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2) and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE), electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of β-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to β-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable β-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA) and quaking induced conversion (QuIC).
Collapse
Affiliation(s)
- Carol L. Ladner-Keay
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, Edmonton, Alberta, Canada
| | - Bethany J. Griffith
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, Edmonton, Alberta, Canada
| | - David S. Wishart
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Saleem F, Bjorndahl TC, Ladner CL, Perez-Pineiro R, Ametaj BN, Wishart DS. Lipopolysaccharide induced conversion of recombinant prion protein. Prion 2014; 8:28939. [PMID: 24819168 DOI: 10.4161/pri.28939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The conformational conversion of the cellular prion protein (PrP(C)) to the β-rich infectious isoform PrP(Sc) is considered a critical and central feature in prion pathology. Although PrP(Sc) is the critical component of the infectious agent, as proposed in the "protein-only" prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrP(C) to proteinase K resistant PrP(Sc). A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrP(C) conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrP(C) to PrP(Sc), we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90-232).
Collapse
Affiliation(s)
- Fozia Saleem
- Department of Biological Sciences; University of Alberta; Edmonton, AB Canada
| | - Trent C Bjorndahl
- Department of Computing Science; University of Alberta; Edmonton, AB Canada
| | - Carol L Ladner
- Department of Computing Science; University of Alberta; Edmonton, AB Canada; National Institute for Nanotechnology; Edmonton, AB Canada
| | | | - Burim N Ametaj
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton, AB Canada
| | - David S Wishart
- Department of Biological Sciences; University of Alberta; Edmonton, AB Canada; Department of Computing Science; University of Alberta; Edmonton, AB Canada; National Institute for Nanotechnology; Edmonton, AB Canada
| |
Collapse
|