1
|
Du Y, Xu CM, Zhang YM, Pan ZX, Wang FS, Yang HM, Tang JB. Fabrication of cysteine-modified antibodies with Fc-specific conjugation for covalent and oriented immobilization of native antibodies. Int J Biol Macromol 2024; 276:133962. [PMID: 39029833 DOI: 10.1016/j.ijbiomac.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Covalent and oriented immobilization of antibodies (Abs) can substantially improve the sensitivity and stability of solid-phase immunoassays. By modifying the natural Abs with functional groups that provide unique handles for further conjugation, Abs could be immobilized onto the solid matrices with uniform orientation. Herein, an effective approach for Fc-specific modification of Abs was developed for the oriented and covalent immobilization of Abs. Twelve photoreactive Z-domain variants, incorporated with a photoactivable probe (p-benzoyl-L-phenylalanine, Bpa) at different positions and carrying a C-terminal Cys-tag (i.e. ZBpa-Cys variants), were individually constructed and produced in Escherichia coli and tested for photo-cross-linking to various IgGs. The different ZBpa-Cys variants demonstrated large differences in photo-conjugation efficiency for the tested IgGs. The conjugation efficiencies of 17thZBpa-Cys ranged from 90 % to nearly 100 % for rabbit IgG and mouse IgG2a, IgG2b and IgG3. Other variants, including 5thZBpa-Cys, 18thZBpa-Cys, 32thZBpa-Cys, and 35thZBpa-Cys, also displayed conjugation efficiencies of 61 %-83 % for mouse IgG1, IgG2a and IgG3. Subsequently, the photo-modified Abs, namely IgG-Cys conjugates, were covalently immobilized onto a maleimide group-functionalized solid-phase carrier on the basis of the reaction of sulfhydryl and maleimide. Thus, a generic platform for the controlled and oriented immobilization of Abs was developed, and the efficacy and potential of the proposed approach for sensitive immunoassays was demonstrated by detecting human α-fetoprotein.
Collapse
Affiliation(s)
- Yue Du
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Chong-Mei Xu
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yu-Min Zhang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zheng-Xuan Pan
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| | - Jin-Bao Tang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
2
|
Bao L, Yang A, Liu Z, Ma J, Pan J, Zhu Y, Tang Y, Dong P, Zhao G, Chen S. Development of a mammalian cell-based ZZ display system for IgG quantification. BMC Biotechnol 2023; 23:24. [PMID: 37507705 PMCID: PMC10375748 DOI: 10.1186/s12896-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Biological laboratories and companies involved in antibody development need convenient and versatile methods to detect highly active antibodies. METHODS To develop a mammalian cell-based ZZ display system for antibody quantification, the eukaryotic ZZ-displayed plasmid was constructed and transfected into CHO cells. After screening by flow cytometric sorting, the stable ZZ display cells were incubated with reference IgG and samples with unknown IgG content for 40 min at 4℃, the relative fluorescence intensity of cells was analyzed and the concentration of IgG was calculated. RESULTS By investigating the effects of different display-associated genetic elements, a eukaryotic ZZ-displaying plasmid with the highest display efficiency were constructed. After transfection and screening, almost 100% of the cells were able to display the ZZ peptide (designated CHO-ZZ cells). These stable CHO-ZZ cells were able to capture a variety of IgG, including human, rabbit, donkey and even mouse and goat. CHO-ZZ cells could be used to quantify human IgG in the range of approximately 12.5-1000 ng/mL, and to identify high-yielding engineered monoclonal cell lines. CONCLUSIONS We have established a highly efficient CHO-ZZ display system in this study, which enables the quantification of IgG from various species under physiological conditions. This system offers the advantage of eliminating the need for antibody purification and will contribute to antibody development.
Collapse
Affiliation(s)
- Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Aizhen Yang
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Ziqing Liu
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Jiajie Pan
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Yi Zhu
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Ying Tang
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Pu Dong
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Guoping Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
3
|
Gao S, Torrente-Rodríguez RM, Pedrero M, Pingarrón JM, Campuzano S, Rocha-Martin J, Guisán JM. Dextran-coated nanoparticles as immunosensing platforms: Consideration of polyaldehyde density, nanoparticle size and functionality. Talanta 2022; 247:123549. [DOI: 10.1016/j.talanta.2022.123549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
|
4
|
Antibody immobilization for immunosensing. ANAL SCI 2022; 38:1-2. [DOI: 10.1007/s44211-021-00019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Changing Cross-Reactivity for Different Immunoassays Using the Same Antibodies: Theoretical Description and Experimental Confirmation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many applications of immunoassays involve the possible presence of structurally similar compounds that bind with antibodies, but with different affinities. In this regard, an important characteristic of an immunoassay is its cross-reactivity: the possibility of detecting various compounds in comparison with a certain standard. Based on cross-reactivity, analytical systems are assessed as either high-selective (responding strictly to a specific compound) or low-selective (responding to a number of similar compounds). The present study demonstrates that cross-reactivity is not an intrinsic characteristic of antibodies but can vary for different formats of competitive immunoassays using the same antibodies. Assays with sensitive detection of markers and, accordingly, implementation at low concentrations of antibodies and modified (competing) antigens are characterized by lower cross-reactivities and are, thus, more specific than assays requiring high concentrations of markers and interacting reagents. This effect was confirmed by both mathematical modeling and experimental comparison of an enzyme immunoassay and a fluorescence polarization immunoassay of sulfonamides and fluoroquinolones. Thus, shifting to lower concentrations of reagents decreases cross-reactivities by up to five-fold. Moreover, the cross-reactivities are changed even in the same assay format by varying the ratio of immunoreactants’ concentrations and shifting from the kinetic or equilibrium mode of the antigen-antibody reaction. The described patterns demonstrate the possibility of modulating immunodetection selectivity without searching for new binding reactants.
Collapse
|
6
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Coussot G, Le Postollec A, Faye C, Dobrijevic M. A gold standard method for the evaluation of antibody-based materials functionality: Approach to forced degradation studies. J Pharm Biomed Anal 2018; 152:17-24. [DOI: 10.1016/j.jpba.2018.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
8
|
Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017; 12:02D301. [DOI: 10.1116/1.4978435] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application. Anal Chim Acta 2017; 949:76-82. [DOI: 10.1016/j.aca.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
|
10
|
Demey H, Tria SA, Soleri R, Guiseppi-Elie A, Bazin I. Sorption of his-tagged Protein G and Protein G onto chitosan/divalent metal ion sorbent used for detection of microcystin-LR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15-24. [PMID: 26667644 DOI: 10.1007/s11356-015-5758-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
A highly sensitive, specific, simple, and rapid chemiluminescence enzyme immunoassay (CLEIA) was developed for the determination of microcystin-LR (MC-LR) by using strategies for oriented immobilization of functionally intact polyclonal antibodies on chitosan surface. Several physicochemical parameters such as metal ion adsorption, hexahistidine-tagged Protein G sorption, the dilution ratio polyclonal antibody concentration, and peroxidase-labeled MC-LR concentration were studied and optimized. The sorption in batch system of G-histidine and G-proteins was studied on a novel sorbent consisting of chitosan/divalent metal ions. Transition metals as Ni++ and Zn++ were immobilized through interaction with -NH2 groups of chitosan in order to supply a material capable to efficiently remove the proteins from aqueous solutions. The maximum uptake of divalent metals onto the chitosan material was found to be 230 mg g-1 for Zn++ and 62 mg g-1 for Ni++. Experimental data were evaluated using the Langmuir and Freundlich models; the results were well fitted with the Langmuir model; chitosan/Ni++ foam was found to be the best sorbent for G-protein, maximum sorption capacity obtained was 17 mg g-1, and chitosan/Zn++ was found to be the best for G-histidine with a maximum sorption capacity of 44 mg g-1. Kinetic data was evaluated with pseudo-first- and pseudo-second-order models; the sorption kinetics were in all cases better represented by a pseudo-second-order model. Under optimum conditions, the calibration curve obtained for MC-LR gave detection limits of 0.5 ± 0.06 μg L-1, the 50 % inhibition concentration (IC50) was 2.75 ± 0.03 μg L-1, and the quantitative detection range was 0.5-25 μg L-1. The limit of detection (LOD) attained from the calibration curves and the results obtained demonstrate the potential use of CLEIA with chitosan support as a screening tool for the analysis of pollutants in environmental samples.
Collapse
Affiliation(s)
- Hary Demey
- École des Mines d'Alès, Centre des Matériaux des Mines d'Alès, 6 Avenue de Clavières, 30319, Alès CEDEX, France
| | - Scherrine A Tria
- École des Mines d'Alès, Laboratoire de Génie de L'Environnement Industriel, 6 Avenue de Clavières, 30319, Alès CEDEX, France
| | - Romain Soleri
- École des Mines d'Alès, Laboratoire de Génie de L'Environnement Industriel, 6 Avenue de Clavières, 30319, Alès CEDEX, France
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, The Dwight Look College of Engineering, Texas A&M University, 5045 ETB, College Station, TX, 77843, USA
| | - Ingrid Bazin
- École des Mines d'Alès, Laboratoire de Génie de L'Environnement Industriel, 6 Avenue de Clavières, 30319, Alès CEDEX, France.
| |
Collapse
|
11
|
Miyao H, Ikeda Y, Shiraishi A, Kawakami Y, Sueda S. Immobilization of immunoglobulin-G-binding domain of Protein A on a gold surface modified with biotin ligase. Anal Biochem 2015; 484:113-21. [PMID: 25998102 DOI: 10.1016/j.ab.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 11/29/2022]
Abstract
Protein A from Staphylococcus aureus specifically binds to the Fc region of immunoglobulin G (IgG) and is widely used as a scaffold for the immobilization of IgG antibodies on solid supports. It is known that the oriented immobilization of Protein A on solid supports enhances its antibody-binding capability in comparison with immobilization in a random manner. In the current work, we developed a novel method for the oriented immobilization of the IgG-binding domain of Protein A based on the biotinylation reaction from archaeon Sulfolobus tokodaii. Biotinylation from S. tokodaii has a unique property in that the enzyme, biotin protein ligase (BPL), forms a stable complex with its biotinylated substrate protein, biotin carboxyl carrier protein (BCCP). Here, BCCP was fused to the IgG-binding domain of Protein A, and the resulting fusion protein was immobilized on the BPL-modified gold surface of the sensor chip for quartz crystal microbalance through complexation between BCCP and BPL. The layer of the IgG-binding domain prepared in this way successfully captured the antibody, and the captured antibody retained high antigen-binding capability.
Collapse
Affiliation(s)
- Hiroki Miyao
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Yusuke Ikeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Arata Shiraishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Yuji Kawakami
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan; Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan.
| |
Collapse
|
12
|
Kim YK, Lim SI, Choi S, Cho IS, Park EH, An DJ. A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor. J Virol Methods 2015; 219:23-27. [PMID: 25813597 PMCID: PMC7119597 DOI: 10.1016/j.jviromet.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
ProLinker™ B, Calixcrown derivatives, makes antibody positioned be more regular with the right orientation on gold-coated quartz surface. The ProLinker-coated QCM showed a superior sensitivity and could detect at low CPV concentration than commercial immunochromatography Ag kit. The QCM biosensor described herein is eminently suitable for the rapid diagnosis of CPV infection with high sensitivity and specificity.
Rapid and accurate diagnosis is crucial to reduce both the shedding and clinical signs of canine parvovirus (CPV). The quartz crystal microbalance (QCM) is a new tool for measuring frequency changes associated with antigen–antibody interactions. In this study, the QCM biosensor and ProLinker™ B were used to rapidly diagnosis CPV infection. ProLinker™ B enables antibodies to be attached to a gold-coated quartz surface in a regular pattern and in the correct orientation for antigen binding. Receiver operating characteristics (ROC) curves were used to set a cut-off value using reference CPVs (two groups: one CPV-positive and one CPV-negative). The ROC curves overlapped and the point of intersection was used as the cut-off value. A QCM biosensor with a cut-off value of −205 Hz showed 95.4% (104/109) sensitivity and 98.0% (149/152) specificity when used to test 261 field fecal samples compared to PCR. In conclusion, the QCM biosensor described herein is eminently suitable for the rapid diagnosis of CPV infection with high sensitivity and specificity. Therefore, it is a promising analytical tool that will be useful for clinical diagnosis, which requires rapid and reliable analyses.
Collapse
Affiliation(s)
- Yong Kwan Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - Seong-In Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - Sarah Choi
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea
| | - Eun-Hye Park
- The Catholic University of Korea, Gyeonggi-do, 420-743, Republic of Korea
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea.
| |
Collapse
|
13
|
Yang HM, Bao RM, Cheng YZ, Tang JB. Site-specific covalent attachment of an engineered Z-domain onto a solid matrix: an efficient platform for 3D IgG immobilization. Anal Chim Acta 2015; 872:1-6. [PMID: 25892064 DOI: 10.1016/j.aca.2015.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022]
Abstract
Immobilized antibodies with oriented and homogeneous patterns are crucial to solid-phase molecular recognition assay. Antibody binding protein-based immobilization can effectively present the desired antibodies. However, steadily installing the stromatoid protein with site-specific attachment manner onto a matrix surface remains to be elucidated. In this study, we present an optimal protocol to tightly attach an immunoglobulin G (IgG)-binding protein (Z-domain) through covalent incorporation of Cys-tag and maleimide group onto polystyrene surface to guarantee site-specific, oriented, and irreversible attachment, resulting in a highly efficient platform for three-dimensional IgG immobilization. The actual IgG-binding characteristic of immobilized Z-Cys was investigated by employing affinity chromatography and size exclusion chromatography. And the efficacy and potential of this platform was demonstrated by applying it to the analysis of interaction between rabbit anti-HRP IgG and its binding partner HRP. The proposed approach may be an attractive strategy to construct high performance antibody arrays and biosensors given that the antibody is compatible with the Z-domain.
Collapse
Affiliation(s)
- Hong-Ming Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Ru-Meng Bao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Jin-Bao Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
14
|
Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins. Anal Chim Acta 2015; 859:66-71. [DOI: 10.1016/j.aca.2014.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
|
15
|
Detection of H3N2 canine influenza virus using a Quartz Crystal Microbalance. J Virol Methods 2014; 208:16-20. [DOI: 10.1016/j.jviromet.2014.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022]
|
16
|
Bodelón G, Mourdikoudis S, Yate L, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins. ACS NANO 2014; 8:6221-6231. [PMID: 24811229 DOI: 10.1021/nn5016665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellulose-based materials are widely used in analytical chemistry as platforms for chromatographic and immunodiagnostic techniques. Due to its countless advantages (e.g., mechanical properties, three-dimensional structure, large surface to volume area, biocompatibility and biodegradability, and high industrial availability), paper has been rediscovered as a valuable substrate for sensors. Polymeric materials such as cellulosic paper present high protein capture ability, resulting in a large increase of detection signal and improved assay sensitivity. However, cellulose is a rather nonreactive material for direct chemical coupling. Aiming at developing an efficient method for controlled conjugation of cellulose-based materials with proteins, we devised and fabricated a hybrid scaffold based on the adsorption and in situ self-assembly of surface-oxidized Ni nanoparticles on filter paper, which serve as "docking sites" for the selective immobilization of proteins containing polyhistidine tags (His-tag). We demonstrate that the interaction between the nickel substrate and the His-tagged protein G is remarkably resilient toward chemicals at concentrations that quickly disrupt standard Ni-NTA and Ni-IDA complexes, so that this system can be used for applications in which a robust attachment is desired. The bioconjugation with His-tagged protein G allowed the binding of anti-Salmonella antibodies that mediated the immuno-capture of live and motile Salmonella bacteria. The versatility and biocompatibility of the nickel substrate were further demonstrated by enzymatic reactions.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física, Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Piletska EV, Piletsky SS, Guerreiro A, Karim K, Whitcombe MJ, Piletsky SA. Microplates with enhanced immobilization capabilities controlled by a magnetic field. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/22243682.2014.914854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 2013; 50:460-71. [PMID: 23911661 DOI: 10.1016/j.bios.2013.06.060] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023]
Abstract
Immunosensor sensitivity, regenerability, and stability directly depend on the type of antibodies used for the immunosensor design, quantity of immobilized molecules, remaining activity upon immobilization, and proper orientation on the sensing interface. Although sensor surfaces prepared with antibodies immobilized in a random manner yield satisfactory results, site-directed immobilization of the sensing molecules significantly improves the immunosensor sensitivity, especially when planar supports are employed. This review focuses on the three most conventional site-directed antibody immobilization techniques used in immunosensor design. One strategy of immobilizing antibodies on the sensor surface is via affinity interactions with a pre-formed layer of the Fc binding proteins, e.g., protein A, protein G, Fc region specific antibodies or various recombinant proteins. Another immobilization strategy is based on the use of chemically or genetically engineered antibody fragments that can be attached to the sensor surface covered in gold or self-assembled monolayer via the sulfhydryl groups present in the hinge region. The third most common strategy is antibody immobilization via an oxidized oligosaccharide moiety present in the Fc region of the antibody. The principles, advantages, applications, and arising problems of these most often applied immobilization techniques are reviewed.
Collapse
|
19
|
Tang JB, Sun XF, Yang HM, Zhang BG, Li ZJ, Lin ZJ, Gao ZQ. Well-oriented ZZ-PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies. Anal Chim Acta 2013; 776:74-8. [PMID: 23601284 DOI: 10.1016/j.aca.2013.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
The site specificity and bioactivity retention of antibodies immobilized on a solid substrate are crucial requirements for solid phase immunoassays. A fusion protein between an immunoglobulin G (IgG)-binding protein (ZZ protein) and a polystyrene-binding peptide (PS-tag) was constructed, and then used to develop a simple method for the oriented immobilization of the ZZ protein onto a PS support by the specific attachment of the PS-tag onto a hydrophilic PS. The orientation of intact IgG was achieved via the interaction of the ZZ protein and the constant fragment (Fc), thereby displayed the Fab fragment for binding antigen. The interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP was analyzed. Results showed that the oriented ZZ-PS-tag yielded an IgG-binding activity that is fivefold higher than that produced by the passive immobilization of the ZZ protein. The advantage of the proposed immunoassay strategy was demonstrated through an enzyme-linked immunosorbent assay, in which monoclonal mouse anti-goat IgG and HRP-conjugated rabbit F(ab')2 anti-goat IgG were used to detect goat IgG. The ZZ-PS-tag presented a tenfold higher sensitivity and a wider linear range than did the passively immobilized ZZ protein. The proposed approach may be an attractive strategy for a broad range of applications involving the oriented immobilization of intact IgGs onto PS supports, in which only one type of phi-PS (ZZ-PS-tag) surface is used.
Collapse
Affiliation(s)
- Jin-Bao Tang
- School of Pharmacy & Biology, Weifang Medical University, Weifang 261053, PR China.
| | | | | | | | | | | | | |
Collapse
|