1
|
Mei M, Mu L, Wang Y, Liang S, Zhao Q, Huang L, She G, Shi W. Simultaneous Monitoring of the Adenosine Triphosphate Levels in the Cytoplasm and Nucleus of a Single Cell with a Single Nanowire-Based Fluorescent Biosensor. Anal Chem 2022; 94:11813-11820. [PMID: 35925790 DOI: 10.1021/acs.analchem.2c02030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells. Observing the ATP fluctuation of the cytoplasm and nucleus of the L929 and HeLa cells stimulated by Ca2+, oligomycin, or under cisplatin-induced apoptosis, we found that the ATP levels at two cellular sites exhibited discriminative changes, revealing the different mechanisms of the ATP at these two cellular sites in response to the stimulations.
Collapse
Affiliation(s)
- Mingliang Mei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
2
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
3
|
Guo J, Guo M. Progress in Design and Application of Supramolecular Fluorescent Systems Based on Difluoroboron-Dipyrromethene and Macrocyclic Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Macrocyclic Arenes Functionalized with BODIPY: Rising Stars among Chemosensors and Smart Materials. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrocycles play a crucial role in supramolecular chemistry and the family of macrocyclic arenes represents one of the most important types of hosts. Among them, calixarenes, resorcinarenes and pillararenes are the most commonly encountered macrocyclic arenes, and they have received considerable attention. Boron-dipyrromethene (BODIPY) dyes are fascinating compounds with multiple functionalization sites and outstanding luminescence properties including high fluorescence quantum yields, large molar absorption coefficients and remarkable photo- and chemical stability. The combination of macrocyclic arenes and BODIPY dyes has been demonstrated to be an effective strategy to construct chemosensors for various guests and smart materials with tailored properties. Herein, we firstly summarize the recent advances made so far in macrocyclic arenes substituted with BODIPY. This review only focuses on the three macrocyclic arenes of calixarenes, resorcinarenes and pillararenes, as there are no other macrocyclic arenes substituted BODIPY units at the present time. Hopefully, this review will not only afford a guide and useful information for those who are interested in developing novel chemosensors and smart materials, but also inspire new opportunities in this field.
Collapse
|
5
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
6
|
Cao L, Liang Q, Wei T, Shi Y, Deng T, Meng J. Chromatographic determination and in-situ cell imaging of thiol compounds based on a fluorigenic probe. J Chromatogr A 2018; 1577:47-58. [DOI: 10.1016/j.chroma.2018.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
|
7
|
A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell. Talanta 2018; 182:464-469. [DOI: 10.1016/j.talanta.2018.01.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/15/2018] [Accepted: 01/30/2018] [Indexed: 01/06/2023]
|
8
|
Barbon SM, Buddingh JV, Maar RR, Gilroy JB. Boron Difluoride Adducts of a Flexidentate Pyridine-Substituted Formazanate Ligand: Property Modulation via Protonation and Coordination Chemistry. Inorg Chem 2017; 56:12003-12011. [DOI: 10.1021/acs.inorgchem.7b01984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Stephanie M. Barbon
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Jasmine V. Buddingh
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Ryan R. Maar
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Chao J, Song K, Wang H, Li Z, Zhang Y, Yin C, Huo F, Wang J, Zhang T. A colorimetric and fluorescent pH probe for imaging in E. coli cells. RSC Adv 2017. [DOI: 10.1039/c6ra24885c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MDAKexhibited turn-off fluorescence as the pH decreased. Simultaneously, the color of the solution changed from yellow to colorless.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| | - Kailun Song
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Huijuan Wang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Zhiqing Li
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Yongbin Zhang
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Juanjuan Wang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| | - Ting Zhang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
11
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Li X, Zhang M, Liang H, Huang Z, Tang J, Chen Z, Yang L, Ma LJ, Wang Y, Xu B. 4-(8-quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a new selective and sensitive fluorescent and colorimetric pH probe with dual-responsive ranges in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:517-521. [PMID: 26414554 DOI: 10.1016/j.saa.2015.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Fluorescent and colorimetric pH probe possess many advantages including rapid response time, nondestructive testing, and excellent pH sensitivity. However, they usually cannot be utilized simultaneously in both acidic and basic pH ranges. In this study, a new selective and sensitive fluorescent and colorimetric pH probe, 4-(8-quinolyl)amino-7-nitro-2,1,3-benzoxadiazole (1), was designated and synthesized. The optical probe exhibited dual-responsive pH ranges to both acidic and basic aqueous solutions. When the solution pH was gradually increased from 8.5 to 13.3, the absorption spectra of 1 showed an obvious hyperchromicity, accompanied with a red shift of the absorption band at 340 nm, a blue shift of the absorption band at 482 nm, and a distinct color change from orange to violet pink to yellow. Within the pH range from 2.2 to 0.2, the fluorescent spectra of 1 showed a "turn-on" response signal to solution pH. In order to understand the response mechanism of the probe to solution pH, the probe molecule was split into two parts, 8-aminoquinoline (2) and 4-amino-7- nitro-benzofurazan (3). UV-vis absorption and fluorescent experiments of 2 and 3 indicated that both are sensitive optical pH probes. Furthermore, the NMR experiment of 1 was explored in basic and acidic conditions. The results indicated that the colorimetric responses of 1 to pH under basic condition should be attributed to the deprotonation of the imino group on the quinolyl ring, and the fluorescent recognition of 1 to pH under acidic condition was probably due to the protonation of the nitrogen atoms from the benzofurazan and quinolyl rings.
Collapse
Affiliation(s)
- Xutian Li
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Min Zhang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Haipeng Liang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Zhaowei Huang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Jiang Tang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Zhi Chen
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Liting Yang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Li-Jun Ma
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, PR China.
| | - Yuhai Wang
- School of Chemistry and Environment, South China Normal University, Shipai, Guangzhou 510631, PR China
| | - Baiping Xu
- Technology Development Center for Polymer Processing Engineering of Guangdong Colleges and Universities, Guangdong Industry Technical College, Guangzhou 510300, PR China
| |
Collapse
|
13
|
Wang E, Zhou Y, Huang Q, Pang L, Qiao H, Yu F, Gao B, Zhang J, Min Y, Ma T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu(2+). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:327-335. [PMID: 26232576 DOI: 10.1016/j.saa.2015.07.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu(2+) in Tris-HCl (10mM, pH=7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu(2+) in real water samples.
Collapse
Affiliation(s)
- Enze Wang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| | - Qi Huang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Lanfang Pang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Han Qiao
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Fang Yu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Junli Zhang
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475004, PR China
| | - Yinghao Min
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Tongsen Ma
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
14
|
Shi W, Li X, Ma H. Fluorescent probes and nanoparticles for intracellular sensing of pH values. Methods Appl Fluoresc 2014; 2:042001. [DOI: 10.1088/2050-6120/2/4/042001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Agasti SS, Laughney AM, Kohler RH, Weissleder R. A photoactivatable drug-caged fluorophore conjugate allows direct quantification of intracellular drug transport. Chem Commun (Camb) 2014; 49:11050-11052. [PMID: 24135896 DOI: 10.1039/c3cc46089d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report here a method that utilizes a photoactivatable drug-caged fluorophore conjugate to quantify intracellular drug trafficking processes at single cell resolution. Photoactivation is performed in labeled cellular compartments to visualize intracellular drug exchange under physiological conditions, without the need for washing, facilitating its translation into in vivo cancer models.
Collapse
Affiliation(s)
- Sarit S Agasti
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., Boston, MA 02114 (USA)
| | - Ashley M Laughney
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., Boston, MA 02114 (USA)
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., Boston, MA 02114 (USA)
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge St., Boston, MA 02114 (USA).,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Alpert 536, Boston, MA 02115 (USA)
| |
Collapse
|
16
|
Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat 2014; 24:485-500. [PMID: 24456081 DOI: 10.1517/13543776.2014.881472] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Although the medicinal use of boron-containing compounds (BCCs) had long been limited to antiseptics, in the last few decades, these compounds have been used as antibiotics or chemotherapeutic agents. In the last few years, boron has been included in the moieties of many known drugs to improve their capacity in binding to their respective target receptors. AREAS COVERED The current review focuses on research and patent literature of the last decade related to the development of BCCs as preventive, diagnostic and therapeutic tools. It explores the possible mechanisms of action of these compounds as well as the advantageous features of their structure and chemico-pharmacological properties. EXPERT OPINION Although uncertainties exist about the mechanism of action of BCCs, increasing evidence about their toxicological profile strongly suggests that many can be safely administered to humans. Even stronger evidence exists regarding the capacity of BCCs to reach multiple targets that are involved in the treatment of common diseases. It seems fair to say that some BCCs will reach the market for medicinal use in the near future, not only for targeting microbial or neoplastic systems but also for acting on cell-signaling processes involved in many other disorders.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Departamento de Fisiología and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Miguel Hidalgo, México City, D.F, 11340 , México +52 555 7296000 ; +52 555 7296000-Ext 62751 ;
| | | | | |
Collapse
|
17
|
Moriarty RD, Martin A, Adamson K, O'Reilly E, Mollard P, Forster RJ, Keyes TE. The application of water soluble, mega-Stokes-shifted BODIPY fluorophores to cell and tissue imaging. J Microsc 2014; 253:204-18. [PMID: 24467513 DOI: 10.1111/jmi.12111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/20/2013] [Indexed: 01/30/2023]
Abstract
BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophores are widely used in bioimaging to label proteins, lipids and nucleotides, but in spite of their attractive optical properties they tend to be prone to self-quenching because of their notably small Stokes shift. Herein, we compare two BODIPY compounds from a recently developed family of naphthyridine substituted BODIPY derivatives, one a visible emitting derivative (BODIPY-VIS) and one a near-infrared emitting fluorophore with a Stokes shift of approximately 165 nm as contrast reagents for live mammalian cells and murine brain tissue. The compounds were rendered water soluble by their conjugation to polyethylene glycol (PEG). Both PEGylated compounds exhibited good cell uptake compared with their parent compounds and confocal fluorescence microscopy revealed all dyes explored to be nuclear excluding, localizing predominantly within the lipophilic organelles; the endoplasmic reticulum and mitochondria. Cytotoxicity studies revealed that these BODIPY derivatives are modestly cytotoxic at concentrations exceeding 10 μM where they induce apoptosis and necrosis. Although the quantum yield of emission of the visible emitting fluorophore was over an order of magnitude greater than the Mega-Stokes shifted probe, the latter showed considerably reduced tendency to self quench and less interference from autofluorescence. The near-infrared probe also showed good penetrability and staining in live tissue samples. In the latter case similar tendency to exclude the nucleus and to localize in the mitochondria and endoplasmic reticulum was observed as in live cells. This to our knowledge is the first demonstration of such a Mega-Stokes BODIPY probe applied to cell and tissue imaging.
Collapse
Affiliation(s)
- R D Moriarty
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao XX, Chen XP, Shen SL, Li DP, Zhou S, Zhou ZQ, Xiao YH, Xi G, Miao JY, Zhao BX. A novel pH probe based on a rhodamine–rhodamine platform. RSC Adv 2014. [DOI: 10.1039/c4ra07555b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel pH probe based on rhodamine–rhodanine platform.
Collapse
Affiliation(s)
- Xuan-Xuan Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Xin-Peng Chen
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Shi-Li Shen
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Dong-Peng Li
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Shuai Zhou
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Ze-Quan Zhou
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Yu-Hao Xiao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Gang Xi
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| |
Collapse
|
19
|
Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosens Bioelectron 2013; 50:42-9. [DOI: 10.1016/j.bios.2013.05.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
|
20
|
Fan L, Liu Q, Lu D, Shi H, Yang Y, Li Y, Dong C, Shuang S. A novel far-visible and near-infrared pH probe for monitoring near-neutral physiological pH changes: imaging in live cells. J Mater Chem B 2013; 1:4281-4288. [DOI: 10.1039/c3tb20547a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|