1
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
2
|
Touloupakis E, Calegari Moia I, Zampieri RM, Cocozza C, Frassinelli N, Marchi E, Foderi C, Di Lorenzo T, Rezaie N, Muzzini VG, Traversi ML, Giovannelli A. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. BIOSENSORS 2024; 14:373. [PMID: 39194602 DOI: 10.3390/bios14080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The development of tools to quickly identify the fate of damaged trees after a stress event such as a wildfire is of great importance. In this context, an innovative approach to assess irreversible physiological damage in trees could help to support the planning of management decisions for disturbed sites to restore biodiversity, protect the environment and understand the adaptations of ecosystem functionality. The vitality of trees can be estimated by several physiological indicators, such as cambium activity and the amount of starch and soluble sugars, while the accumulation of ethanol in the cambial cells and phloem is considered an alarm sign of cell death. However, their determination requires time-consuming laboratory protocols, making the approach impractical in the field. Biosensors hold considerable promise for substantially advancing this field. The general objective of this review is to define a system for quantifying the plant vitality in forest areas exposed to fire. This review describes recent electrochemical biosensors that can detect plant molecules, focusing on biosensors for glucose, fructose, and ethanol as indicators of tree vitality.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Isabela Calegari Moia
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Raffaella Margherita Zampieri
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Niccolò Frassinelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Enrico Marchi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Cristiano Foderi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Valerio Giorgio Muzzini
- Research Institute on Terrestrial Ecosystems, National Research Council, Research Area of Rome 1, Strada Provinciale 35d n. 9, Montelibretti, 00010 Rome, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Lei R, Kuang R, Peng X, Jiao Z, Zhao Z, Cong H, Fan Z, Zhang Y. Portable rapid detection of maize chlorotic mottle virus using RT-RAA/CRISPR-Cas12a based lateral flow assay. FRONTIERS IN PLANT SCIENCE 2023; 14:1088544. [PMID: 36938014 PMCID: PMC10021709 DOI: 10.3389/fpls.2023.1088544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Maize lethal necrosis seriously threatens maize production worldwide, which was caused by coinfection by maize chlorotic mottle virus (MCMV) and a potyvirid. To effectively control maize lethal necrosis, it is vital to develop a rapid, sensitive, and specific detection method for the early diagnosis of MCMV in host plant tissues. METHODS We established a rapid detection procedure by combining the one-step reverse-transcription recombinase-aided amplification (one-step RT-RAA) and CRISPR/Cas12a-based lateral flow assay in one tube (one-tube one-step RT-RAA/CRISPR-Cas12a), which can be implemented on a portable metal incubator at 37~42°C. Furthermore, the crude extract of total RNA from plant materials using alkaline-PEG buffer can be directly used as the template for one-step RT-RAA. RESULTS The developed one-tube one-step RT-RAA/CRISPR-Cas12a lateral flow assay can detect as low as 2.5 copies of the coat protein (CP) gene of MCMV and 0.96 pg of the total RNA extracted from MCMV infected maize leaves. Furthermore, the MCMV infected maize leaves at 5 dpi having no obvious symptoms was detected as weak positive. DISCUSSION The crude extraction method of total RNA from plant materials required no complicated device, and all the procedures could be implemented at room temperature and on a portable metal incubator, costing a total time of about 1h. The one-step RT-RAA reagents and CRISPR/Cas12a reagents can be lyophilized for easy storage and transportation of reagents, which makes this method more feasible for the filed detection. This method presents rapidness, robustness and on-site features in detecting viral RNA, and is a promising tool for the field application in minimally equipped laboratories.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ruirui Kuang
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
- State Key Laboratory of Agro-biotechnology and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuanzi Peng
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-biotechnology and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenxing Zhao
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Haolong Cong
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-biotechnology and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongjiang Zhang
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
4
|
Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, Nehela Y, Sohail MA, Ahmed AM, Kubar KA, Ali S, Usman K, Manghwar H, Zhou L. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. CHEMOSPHERE 2022; 296:133773. [PMID: 35114264 DOI: 10.1016/j.chemosphere.2022.133773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/22/2023]
Abstract
Phytopathogenic bacteria cause severe economic losses in agricultural production worldwide. The spread rates, severity, and emerging plant bacterial diseases have become serious threat to the sustainability of food sources and the fruit industry. Detection and diagnosis of plant diseases are imperative in order to manage plant diseases in field conditions, greenhouses, and food storage conditions as well as to maximize agricultural productivity and sustainability. To date, various techniques including, serological, observation-based, and molecular methods have been employed for plant disease detection. These methods are sensitive and specific for genetic identification of bacteria. However, these methods are specific for genetic identification of bacteria. Currently, the innovative biosensor-based disease detection technique is an attractive and promising alternative. A biosensor system involves biological recognition and transducer active receptors based on sensors used in plant-bacteria diagnosis. This system has been broadly used for the rapid diagnosis of plant bacterial pathogens. In the present review, we have discussed the conventional methods of bacterial-disease detection, however, the present review mainly focuses on the applications of different biosensor-based techniques along with point-of-care (POC), robotics, and cell phone-based systems. In addition, we have also discussed the challenges and limitations of these techniques.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, 210095, China.
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, PR China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tando Jam, Sindh, Pakistan
| | - Kashif Ali Kubar
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Balochistan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests. INVENTIONS 2021. [DOI: 10.3390/inventions6020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
Collapse
|
6
|
Yasun E, Gandhi S, Choudhury S, Mohammadinejad R, Benyettou F, Gozubenli N, Arami H. Hollow micro and nanostructures for therapeutic and imaging applications. J Drug Deliv Sci Technol 2020; 60:102094. [PMID: 34335877 PMCID: PMC8320649 DOI: 10.1016/j.jddst.2020.102094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hollow particles have been extensively used in bioanalytical and biomedical applications for almost two decades due to their unique and tunable optoelectronic properties as well as their significantly high loading capacities. These intrinsic properties led them to be used in various bioimaging applications as contrast agents, controlled delivery (i.e. drugs, nucleic acids and other biomolecules) platforms and photon-triggered therapies (e.g. photothermal and photodynamic therapies). Since recent studies showed that imaging-guided targeted therapeutics have higher success rates, multimodal theranostic platforms (combination of one or more therapy and diagnosis modality) have been employed more often and hollow particles (i.e. nanoshells) have been one of the most efficient candidates to be used in multiple-purpose platforms, owing to their intrinsic properties that enable synergistic multimodal performance. In this review, recent advances in the applications of such hollow particles fabricated with various routes (either inorganic or organic based) were summarized to delineate strategies for tuning their properties for more efficient biomedical performance by overcoming common biological barriers. This review will pave the ways for expedited progress in design of next generation of hollow particles for clinical applications.
Collapse
Affiliation(s)
- Emir Yasun
- University of California, Santa Barbara and California NanoSystems Institute (CNSI), Santa Barbara, CA, 93106, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Samraggi Choudhury
- DBT-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farah Benyettou
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Numan Gozubenli
- Molecular Biology and Genetics Department, Harran University, Sanliurfa, Turkey
| | - Hamed Arami
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford (MIPS), The James H Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Kamal Eddin FB, Fen YW. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020; 25:molecules25122769. [PMID: 32549390 PMCID: PMC7356898 DOI: 10.3390/molecules25122769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson’s disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
9
|
Okuno T, Morimoto S, Nishikawa H, Haraguchi T, Kojima H, Tsujino H, Arisawa M, Yamashita T, Nishikawa J, Yoshida M, Habara M, Ikezaki H, Uchida T. Bitterness-Suppressing Effect of Umami Dipeptides and Their Constituent Amino Acids on Diphenhydramine: Evaluation by Gustatory Sensation and Taste Sensor Testing. Chem Pharm Bull (Tokyo) 2020; 68:234-243. [DOI: 10.1248/cpb.c19-00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayoshi Okuno
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | - Shiori Morimoto
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | | | | | - Honami Kojima
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | | | | | - Taku Yamashita
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | | | - Miyako Yoshida
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | | | | | - Takahiro Uchida
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| |
Collapse
|
10
|
Abstract
Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the Potyviridae, such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips ( Frankliniella williamsi), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| | - Lucy R Stewart
- Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691, USA; .,United States Department of Agriculture, Agricultural Research Service, Wooster, Ohio 44691, USA;
| |
Collapse
|
11
|
Hong S, Lee C. The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. THE PLANT PATHOLOGY JOURNAL 2018; 34:85-92. [PMID: 29628814 PMCID: PMC5880352 DOI: 10.5423/ppj.rw.08.2017.0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 05/23/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.
Collapse
Affiliation(s)
| | - Cheolho Lee
- Corresponding author. Phone) +82-2-940-7188, E-mail)
| |
Collapse
|
12
|
Shiraishi S, Haraguchi T, Nakamura S, Li D, Kojima H, Yoshida M, Uchida T. Taste-Masking Effect of Chlorogenic Acid (CGA) on Bitter Drugs Evaluated by Taste Sensor and Surface Plasmon Resonance on the Basis of CGA–Drug Interactions. Chem Pharm Bull (Tokyo) 2017; 65:127-133. [DOI: 10.1248/cpb.c16-00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Saki Nakamura
- Faculty of Pharmaceutical Science, Mukogawa Women’s University
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
| | - Honami Kojima
- Faculty of Pharmaceutical Science, Mukogawa Women’s University
| | - Miyako Yoshida
- Faculty of Pharmaceutical Science, Mukogawa Women’s University
| | - Takahiro Uchida
- Faculty of Pharmaceutical Science, Mukogawa Women’s University
| |
Collapse
|
13
|
Liu Z, Xia X, Yang C, Huang J. Colorimetric detection of Maize chlorotic mottle virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynapthol blue dye. RSC Adv 2016. [DOI: 10.1039/c5ra20789d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maize chlorotic mottle virus causes corn lethal necrosis disease, and can be transmitted via infected maize seeds. A colorimetric assay for the detection of Maize chlorotic mottle virus was developed which utilises RT-LAMP and hydroxynapthol blue dye (HNB).
Collapse
Affiliation(s)
- Zhanmin Liu
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| | - Xueying Xia
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| | - Cuiyun Yang
- Shanghai Entry-Exit Inspection and Quarantine Bureau
- Shanghai 200135
- China
| | - Junyi Huang
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| |
Collapse
|
14
|
Fang Y, Ramasamy RP. Current and Prospective Methods for Plant Disease Detection. BIOSENSORS 2015; 5:537-61. [PMID: 26287253 PMCID: PMC4600171 DOI: 10.3390/bios5030537] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023]
Abstract
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases.
Collapse
Affiliation(s)
- Yi Fang
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Liu Z, Xia X, Yang C, Wang L. Visual detection of Maize chlorotic mottle virus using unmodified gold nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra16326a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual detection of Maize chlorotic mottle virus was investigated using unmodified gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Zhanmin Liu
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| | - Xueying Xia
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| | - Cuiyun Yang
- Shanghai Entry-Exit Inspection and Quarantine Bureau
- Shanghai 200135
- China
| | - Lin Wang
- School of Life Sciences
- Shanghai University
- Shanghai
- China
| |
Collapse
|
16
|
Peng L, Damschroder MM, Wu H, Dall’Acqua WF. Bi-epitope SPR surfaces: a solution to develop robust immunoassays. PLoS One 2014; 9:e112070. [PMID: 25372291 PMCID: PMC4221230 DOI: 10.1371/journal.pone.0112070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
Surface plasmon resonance (SPR)-based immunoassays have numerous applications and require high affinity reagents for sensitive and reliable measurements. We describe a quick approach to turn low affinity antibodies into appropriate capture reagents. We used antibodies recognizing human ephrin type A receptor 2 (EphA2) and a ProteOn XPR36 as a model system. We generated so-called 'bi-epitope' sensor surfaces by immobilizing various pairs of anti-EphA2 antibodies using standard amine coupling. The apparent binding affinities to EphA2 and EphA2 detection sensitivities of the bi-epitope and 'single-epitope' surfaces were then compared. For all antibody pairs tested, bi-epitope surfaces exhibited an ∼ 10-100-fold improvement in apparent binding affinities when compared with single-epitope ones. When pairing 2 antibodies of low intrinsic binding affinities (∼ 10(-8) M) and fast dissociation rates (∼ 10(-2) s(-1)), the apparent binding affinity and dissociation rate of the bi-epitope surface was improved up to ∼ 10(-10) M and 10(-4) s(-1), respectively. This led to an ∼ 100-200-fold enhancement in EphA2 limit of detection in crude cell supernatants. Our results show that the use of antibody mixtures in SPR applications constitutes a powerful approach to develop sensitive immunoassays, as previously shown for non-SPR formats. As SPR-based assays have significantly expanded their reach in the last decade, such an approach promises to further accelerate their development.
Collapse
Affiliation(s)
- Li Peng
- Department of Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, United States of America
| | - Melissa M. Damschroder
- Department of Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, United States of America
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, United States of America
| | - William F. Dall’Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, United States of America
- * E-mail:
| |
Collapse
|