1
|
Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies. Rev Physiol Biochem Pharmacol 2023; 184:69-120. [PMID: 35061104 DOI: 10.1007/112_2021_67] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Rosenau J, Grothaus IL, Yang Y, Kumar ND, Ciacchi LC, Kelm S, Waespy M. N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase. J Biol Chem 2022; 298:102403. [PMID: 35995210 PMCID: PMC9493392 DOI: 10.1016/j.jbc.2022.102403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme–substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure–function relationship potentially inherent in several members of the TS enzyme family.
Collapse
Affiliation(s)
- Jana Rosenau
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Isabell Louise Grothaus
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany; University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Yikun Yang
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Nilima Dinesh Kumar
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), and MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| | - Sørge Kelm
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany
| | - Mario Waespy
- University of Bremen, Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, 28359 Bremen, Germany.
| |
Collapse
|
4
|
Yang G, Cui M, Jiang W, Sheng J, Yang Y, Zhang X. Molecular switch in human diseases-disintegrin and metalloproteinases, ADAM17. Aging (Albany NY) 2021; 13:16859-16872. [PMID: 34182543 PMCID: PMC8266367 DOI: 10.18632/aging.203200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a family of cell surface proteins with crucial roles in the regulation of cell adhesion, cell proliferation to migration, proteolysis and cell signaling transduction pathways. Among these enzymes, the ADAM17 shows significant effects in the “ectodomain shedding” of its substrates such as cytokines (e.g., tumor necrosis factor α, TNFα), growth factors (e.g., epidermal growth factor, EGF), adhesion proteins (e.g., L-selectin), and their receptors (e.g., IL-6R and TNFα). Several studies focus on the underlying molecular mechanisms of ADAM17 in diseased conditions. Here, we took several different approaches to elucidate the function of ADAM17, the participation of ADAM17 in several human diseases, and the potential as targeted therapy reagents. As more and more studies verify the miRNA-mediated expression variation of ADAM17, the specific regulation network of miRNAs and ADAM17 was exploited in this review as well.
Collapse
Affiliation(s)
- Guang Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
5
|
Rosini E, Volpi NA, Ziffels B, Grimaldi A, Sacchi S, Neri D, Pollegioni L. An antibody-based enzymatic therapy for cancer treatment: The selective localization of D-amino acid oxidase to EDA fibronectin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102424. [PMID: 34174417 DOI: 10.1016/j.nano.2021.102424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Noemi Antonella Volpi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Barbara Ziffels
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
7
|
Boll I, Jensen P, Schwämmle V, Larsen MR. Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Mol Cell Proteomics 2020; 19:1418-1435. [PMID: 32518069 PMCID: PMC8143646 DOI: 10.1074/mcp.ra119.001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.
Collapse
Affiliation(s)
- Inga Boll
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
8
|
Minond D. Novel Approaches and Challenges of Discovery of Exosite Modulators of a Disintegrin and Metalloprotease 10. Front Mol Biosci 2020; 7:75. [PMID: 32435655 PMCID: PMC7218085 DOI: 10.3389/fmolb.2020.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
A disintegrin and metaproteinase 10 is an important target for multiple therapeutic areas, however, despite drug discovery efforts by both industry and academia no compounds have reached the clinic so far. The lack of enzyme and substrate selectivity of developmental drugs is believed to be a main obstacle to the success. In this review, we will focus on novel approaches and associated challenges in discovery of ADAM10 selective modulators that can overcome shortcomings of previous generations of compounds and be translated into the clinic.
Collapse
Affiliation(s)
- Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
9
|
Camodeca C, Cuffaro D, Nuti E, Rossello A. ADAM Metalloproteinases as Potential Drug Targets. Curr Med Chem 2019; 26:2661-2689. [PMID: 29589526 DOI: 10.2174/0929867325666180326164104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.
Collapse
Affiliation(s)
- Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| |
Collapse
|
10
|
Pavlenko E, Cabron AS, Arnold P, Dobert JP, Rose-John S, Zunke F. Functional Characterization of Colon Cancer-Associated Mutations in ADAM17: Modifications in the Pro-Domain Interfere with Trafficking and Maturation. Int J Mol Sci 2019; 20:ijms20092198. [PMID: 31060243 PMCID: PMC6539446 DOI: 10.3390/ijms20092198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed malignancies in the Western world and is associated with elevated expression and activity of epidermal growth factor receptors (EGF-R). The metalloproteinase ADAM17 is involved in EGF-R activation by processing EGF-R ligands from membrane-bound pro-ligands. Underlining the link between colon cancer and ADAM17, genetic intestinal cancer models in ADAM17-deficient mice show a reduced tumor burden. In this study, we characterize point mutations within the ADAM17 gene found in the tissue of colon cancer patients. In order to shed light on the role of ADAM17 in cancer development, as well as into the mechanisms that regulate maturation and cellular trafficking of ADAM17, we here perform overexpression studies of four ADAM17 variants located in the pro-, membrane-proximal- and cytoplasmic-domain of the ADAM17 protein in ADAM10/17-deficient HEK cells. Interestingly, we found a cancer-associated point mutation within the pro-domain of ADAM17 (R177C) to be most impaired in its proteolytic activity and trafficking to the cell membrane. By comparing this variant to an ADAM17 construct lacking the entire pro-domain, we discovered similar functional limitations and propose a crucial role of the pro-domain for ADAM17 maturation, cellular trafficking and thus proteolytic activity.
Collapse
Affiliation(s)
- Egor Pavlenko
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Anne-Sophie Cabron
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| |
Collapse
|
11
|
Abstract
Leucurogin is an ECD disintegrin-like protein, cloned from Bothrops leucurus venom gland. This new protein, encompassing the disintegrin region of a PIII metalloproteinase, is produced by recombinant technology and its biological and functional activity was partially characterized in this study. Biological activity was characterized in vitro using human fibroblasts. Functional activity of leucurogin was analysed in vitro and in vivo with murine B16F10 Nex-2 and human melanoma BLM cells. The results show that leucurogin inhibits cellular processes dependent on collagen type I. In a competition assay with collagen, leucurogin inhibits, in a dose-dependent manner, the adhesion of fibroblast to collagen. At 10 μM leucurogin reduces adhesion (40%) and migration (70%) of hFb and inhibits migration (32%) and proliferation (65%) of BLM cells. At 2.5 μM leucurogin inhibits 80% cell proliferation of B16F10 Nex-2 melanoma cells. At 4.8 μM leucurogin inhibits, in vitro, the vascular structures formation by endothelial cells by 66%. Leucurogin, injected intraperitoneally, i.p. (5 μg/animal, two-month old C57/Bl6 male mice) on alternate days for 15 days, inhibits lung metastasis of B16F10 Nex-2 cells by 70-75%. In the treatment of human melanoma, grafted intradermally in the nude mice flank, leucurogin (7.5 μg/kg in alternate days during 17 days) inhibits tumor growth by more than 40%. Leucurogin can be considered a promising agent for melanoma treatment.
Collapse
|
12
|
Zidovudine-Based Treatments Inhibit the Glycosylation of ADAM17 and Reduce CD163 Shedding From Monocytes. J Acquir Immune Defic Syndr 2018; 79:126-134. [PMID: 29794822 DOI: 10.1097/qai.0000000000001769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND sCD163, a biomarker of monocyte-macrophage activation, has been identified as a predictor of all-cause mortality in treated HIV-infected individuals. Nevertheless, little is known about whether different antiretroviral drugs differentially regulate sCD163 levels and monocyte activation. METHODS A total of 123 patients receiving zidovudine (ZDV)-based (n = 55) or tenofovir disoproxil fumarate (TDF)-based (n = 68) antiretroviral regimens were enrolled, and their viral loads, CD4 counts, as well as plasma sCD163 and sCD14 levels were quantified. Twenty-eight (14 in each group) patients donated additional blood samples for flow cytometry and gene expression analyses using purified monocytes. THP-1 cultures were also used to investigate the effect of ZDV on ADAM17, which is responsible for CD163 shedding. RESULTS As compared to the TDF-treated group, the ZDV-treated group had lower plasma sCD163 levels and higher CD163 expression on CD14++CD16 monocytes. Five metabolic-inflammatory genes exhibited significantly different expression levels between purified monocytes of the ZDV and TDF groups (IL-6, 2.90-fold lower in ZDV group, P < 0.001; iNOS, 1.81-fold higher; CX3CR1, 1.72-fold lower; MIP-1β, 1.10-fold lower; and PPARγ-1, 1.36-fold higher, P < 0.05). Moreover, we show that ZDV treatment increases the surface expression of CD163 in cultured THP-1 cells, accompanied by the inhibition of glycosylation and surface expression of ADAM17. CONCLUSIONS Compared with TDF treatment, ZDV treatment causes lower plasma sCD163 levels, probably by inhibiting the glycosylation of ADAM17 and CD163 shedding. Our results show that ZDV functions as an ADAM17 inhibitor in vivo and extend our understanding of its immune-modulatory effects and adverse effects.
Collapse
|
13
|
Wilson JL, Kefaloyianni E, Stopfer L, Harrison C, Sabbisetti VS, Fraenkel E, Lauffenburger DA, Herrlich A. Functional Genomics Approach Identifies Novel Signaling Regulators of TGFα Ectodomain Shedding. Mol Cancer Res 2018; 16:147-161. [PMID: 29018056 PMCID: PMC5859574 DOI: 10.1158/1541-7786.mcr-17-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/16/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Ectodomain shedding of cell-surface precursor proteins by metalloproteases generates important cellular signaling molecules. Of importance for disease is the release of ligands that activate the EGFR, such as TGFα, which is mostly carried out by ADAM17 [a member of the A-disintegrin and metalloprotease (ADAM) domain family]. EGFR ligand shedding has been linked to many diseases, in particular cancer development, growth and metastasis, as well as resistance to cancer therapeutics. Excessive EGFR ligand release can outcompete therapeutic EGFR inhibition or the inhibition of other growth factor pathways by providing bypass signaling via EGFR activation. Drugging metalloproteases directly have failed clinically because it indiscriminately affected shedding of numerous substrates. It is therefore essential to identify regulators for EGFR ligand cleavage. Here, integration of a functional shRNA genomic screen, computational network analysis, and dedicated validation tests succeeded in identifying several key signaling pathways as novel regulators of TGFα shedding in cancer cells. Most notably, a cluster of genes with NFκB pathway regulatory functions was found to strongly influence TGFα release, albeit independent of their NFκB regulatory functions. Inflammatory regulators thus also govern cancer cell growth-promoting ectodomain cleavage, lending mechanistic understanding to the well-known connection between inflammation and cancer.Implications: Using genomic screens and network analysis, this study defines targets that regulate ectodomain shedding and suggests new treatment opportunities for EGFR-driven cancers. Mol Cancer Res; 16(1); 147-61. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eirini Kefaloyianni
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Harrison
- Department of Biology, University of Massachusetts, Boston, Massachusetts
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Andreas Herrlich
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
14
|
Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. Int J Mol Sci 2016; 17:ijms17121969. [PMID: 27898009 PMCID: PMC5187769 DOI: 10.3390/ijms17121969] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications.
Collapse
|
15
|
Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2015; 93:186-99. [PMID: 26522853 DOI: 10.1016/j.yjmcc.2015.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Srinivasan S, Romagnoli M, Bohm A, Sonenshein GE. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem 2014; 289:33676-88. [PMID: 25336660 DOI: 10.1074/jbc.m114.594242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The transmembrane ADAM8 (A Disintegrin And Metalloproteinase 8) protein is abundantly expressed in human breast tumors and derived metastases compared with normal breast tissue, and plays critical roles in aggressive Triple-Negative breast cancers (TNBCs). During ADAM8 maturation, the inactive proform dimerizes or multimerizes and autocatalytically removes the prodomain leading to the formation of the active, processed form. ADAM8 is a glycoprotein; however, little was known about the structure or functional role of these sugar moieties. Here, we report that in estrogen receptor (ER)α-negative, but not -positive, breast cancer cells ADAM8 contains N-glycosylation, which is required for its correct processing and activation. Consistently ADAM8 dimers were detected on the surface of ERα-negative breast cancer cells but not on ERα-positive ones. Site-directed mutagenesis confirmed four N-glycosylazhytion sites (Asn-67, Asn-91, Asn-436, and Asn-612) in human ADAM8. The Asn-67 and Asn-91 prodomain sites contained high mannose, whereas complex type N-glycosylation was observed on Asn-436 and Asn-612 in the active and remnant forms. The Asn-91 and Asn-612 sites were essential for its correct processing and cell surface localization, in particular its exit from the Golgi and endoplasmic reticulum, respectively. The N436Q mutation led to decreased ADAM8 stability due to enhanced lysosomal degradation. In contrast, mutation of the Asn-67 site had only modest effects on enzyme stability and processing. Thus, N-glycosylation is essential for processing, localization, stability, and activity of ADAM8.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mathilde Romagnoli
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Andrew Bohm
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Gail E Sonenshein
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|