1
|
Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H. Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 2021; 145:112434. [PMID: 34801853 DOI: 10.1016/j.biopha.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023] Open
Abstract
Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.
Collapse
Affiliation(s)
- Kumar Reddy Kakularam
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Felix Karst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Aparoy Polamarasetty
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
2
|
Mikulska-Ruminska K, Anthonymuthu TS, Levkina A, Shrivastava IH, Kapralov AA, Bayır H, Kagan VE, Bahar I. NO ● Represses the Oxygenation of Arachidonoyl PE by 15LOX/PEBP1: Mechanism and Role in Ferroptosis. Int J Mol Sci 2021; 22:ijms22105253. [PMID: 34067535 PMCID: PMC8156958 DOI: 10.3390/ijms22105253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
We recently discovered an anti-ferroptotic mechanism inherent to M1 macrophages whereby high levels of NO● suppressed ferroptosis via inhibition of hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) production by 15-lipoxygenase (15LOX) complexed with PE-binding protein 1 (PEBP1). However, the mechanism of NO● interference with 15LOX/PEBP1 activity remained unclear. Here, we use a biochemical model of recombinant 15LOX-2 complexed with PEBP1, LC-MS redox lipidomics, and structure-based modeling and simulations to uncover the mechanism through which NO● suppresses ETE-PE oxidation. Our study reveals that O2 and NO● use the same entry pores and channels connecting to 15LOX-2 catalytic site, resulting in a competition for the catalytic site. We identified residues that direct O2 and NO● to the catalytic site, as well as those stabilizing the esterified ETE-PE phospholipid tail. The functional significance of these residues is supported by in silico saturation mutagenesis. We detected nitrosylated PE species in a biochemical system consisting of 15LOX-2/PEBP1 and NO● donor and in RAW264.7 M2 macrophages treated with ferroptosis-inducer RSL3 in the presence of NO●, in further support of the ability of NO● to diffuse to, and react at, the 15LOX-2 catalytic site. The results provide first insights into the molecular mechanism of repression of the ferroptotic Hp-ETE-PE production by NO●.
Collapse
Affiliation(s)
- Karolina Mikulska-Ruminska
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| | - Tamil S. Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.A.); (H.B.)
| | - Anastasia Levkina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Indira H. Shrivastava
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Alexandr A. Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.A.); (H.B.)
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, 119048 Moscow, Russia
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| |
Collapse
|
3
|
Anthonymuthu TS, Tyurina YY, Sun WY, Mikulska-Ruminska K, Shrivastava IH, Tyurin VA, Cinemre FB, Dar HH, VanDemark AP, Holman TR, Sadovsky Y, Stockwell BR, He RR, Bahar I, Bayır H, Kagan VE. Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol 2021; 38:101744. [PMID: 33126055 PMCID: PMC7596334 DOI: 10.1016/j.redox.2020.101744] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022] Open
Abstract
Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.
Collapse
Affiliation(s)
- Tamil S Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wan-Yang Sun
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, College of Pharmacy, Guangzhou, China
| | - Karolina Mikulska-Ruminska
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA; Institute of Physics, Faculty of Physics Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fatma B Cinemre
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Sakarya University School of Medicine, Sakarya, Turkey
| | - Haider H Dar
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute and Departments of OBGYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, College of Pharmacy, Guangzhou, China
| | - Ivet Bahar
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Valerian E Kagan
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Navigational Redox Lipidomics Group, Institute for Regenerative Medicine, IM Sechenov First Moscow State Medical University, Russian Federation.
| |
Collapse
|
4
|
Green AR, Barbour S, Horn T, Carlos J, Raskatov JA, Holman TR. Strict Regiospecificity of Human Epithelial 15-Lipoxygenase-2 Delineates Its Transcellular Synthesis Potential. Biochemistry 2016; 55:2832-40. [PMID: 27145229 DOI: 10.1021/acs.biochem.5b01339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lipoxins are an important class of lipid mediators that induce the resolution of inflammation and arise from transcellular exchange of arachidonic acid (AA)-derived lipoxygenase products. Human epithelial 15-lipoxygenase-2 (h15-LOX-2), the major lipoxygenase in macrophages, has exhibited strict regiospecificity, catalyzing only the hydroperoxidation of carbon 15 of AA. To determine the catalytic potential of h15-LOX-2 in transcellular synthesis events, we reacted it with the three lipoxygenase-derived monohydroperoxy-eicosatetraenoic acids (HPETE) in humans: 5-HPETE, 12-HPETE, and 15-HPETE. Only 5-HPETE was a substrate for h15-LOX-2, and the steady-state catalytic efficiency (kcat/Km) of this reaction was 31% of the kcat/Km of AA. The only major product of h15-LOX-2's reaction with 5-HPETE was the proposed lipoxin intermediate, 5,15-dihydroperoxy-eicosatetraenoic acid (5,15-diHPETE). However, h15-LOX-2 did not react further with 5,15-diHPETE to produce lipoxins. This result is consistent with the specificity of h15-LOX-2 despite the increased reactivity of 5,15-diHPETE. Density functional theory calculations determined that the radical, after abstracting the C10 hydrogen atom from 5,15-diHPETE, had an energy 5.4 kJ/mol lower than that of the same radical generated from AA, demonstrating the facility of 5,15-diHPETE to form lipoxins. Interestingly, h15-LOX-2 does react with 5S,6R-diHETE, forming LipoxinA4, indicating the gemdiol does not prohibit h15-LOX-2 reactivity. Taken together, these results demonstrate the strict regiospecificity of h15-LOX-2 that circumscribes its role in transcellular synthesis.
Collapse
Affiliation(s)
- Abigail R Green
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | - Shannon Barbour
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | - Thomas Horn
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | - Jose Carlos
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | - Jevgenij A Raskatov
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | - Theodore R Holman
- Department Chemistry and Biochemistry, University of California at Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
5
|
Doyle SK, Pop MS, Evans HL, Koehler AN. Advances in discovering small molecules to probe protein function in a systems context. Curr Opin Chem Biol 2015; 30:28-36. [PMID: 26615565 DOI: 10.1016/j.cbpa.2015.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
High throughput screening (HTS) has historically been used for drug discovery almost exclusively by the pharmaceutical industry. Due to a significant decrease in costs associated with establishing a high throughput facility and an exponential interest in discovering probes of development and disease associated biomolecules, HTS core facilities have become an integral part of most academic and non-profit research institutions over the past decade. This major shift has led to the development of new HTS methodologies extending beyond the capabilities and target classes used in classical drug discovery approaches such as traditional enzymatic activity-based screens. In this brief review we describe some of the most interesting developments in HTS technologies and methods for chemical probe discovery.
Collapse
Affiliation(s)
- Shelby K Doyle
- David H. Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marius S Pop
- David H. Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen L Evans
- David H. Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|