1
|
Wu J, Wen T, Marzio A, Song D, Chen S, Yang C, Zhao F, Zhang B, Zhao G, Ferri A, Cheng H, Ma J, Ren H, Chen QY, Yang Y, Qin S. FBXO32-mediated degradation of PTEN promotes lung adenocarcinoma progression. Cell Death Dis 2024; 15:282. [PMID: 38643215 PMCID: PMC11032391 DOI: 10.1038/s41419-024-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
FBXO32, a member of the F-box protein family, is known to play both oncogenic and tumor-suppressive roles in different cancers. However, the functions and the molecular mechanisms regulated by FBXO32 in lung adenocarcinoma (LUAD) remain unclear. Here, we report that FBXO32 is overexpressed in LUAD compared with normal lung tissues, and high expression of FBXO32 correlates with poor prognosis in LUAD patients. Firstly, we observed with a series of functional experiments that FBXO32 alters the cell cycle and promotes the invasion and metastasis of LUAD cells. We further corroborate our findings using in vivo mouse models of metastasis and confirmed that FBXO32 positively regulates LUAD tumor metastasis. Using a proteomic-based approach combined with computational analyses, we found a positive correlation between FBXO32 and the PI3K/AKT/mTOR pathway, and identified PTEN as a FBXO32 interactor. More important, FBXO32 binds PTEN via its C-terminal substrate binding domain and we also validated PTEN as a bona fide FBXO32 substrate. Finally, we demonstrated that FBXO32 promotes EMT and regulates the cell cycle by targeting PTEN for proteasomal-dependent degradation. In summary, our study highlights the role of FBXO32 in promoting the PI3K/AKT/mTOR pathway via PTEN degradation, thereby fostering lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Antonio Marzio
- Department of Pathology and Laboratory Medicine, Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sisi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengyu Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Alessandra Ferri
- Department of Pathology and Laboratory Medicine, Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Hao Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Ma
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yiping Yang
- Clinical Research Center for Shaanxi Provincial Radiotherapy, Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, China.
| | - Sida Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Koganti P, Kadali VN, Manikoth Ayyathan D, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The E3 ubiquitin ligase SMURF2 stabilizes RNA editase ADAR1p110 and promotes its adenosine-to-inosine (A-to-I) editing function. Cell Mol Life Sci 2022; 79:237. [PMID: 35403872 PMCID: PMC11072456 DOI: 10.1007/s00018-022-04272-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Epitranscriptomic changes in RNA catalyzed by the RNA-editing enzyme ADAR1 play an essential role in the regulation of diverse molecular and cellular processes, both under physiological conditions and in disease states, including cancer. Yet, despite a growing body of evidence pointing to ADAR1 as a potential therapeutic target, the mechanisms regulating its cellular abundance and activity, particularly of its constitutively expressed and ubiquitous form, ADAR1p110, are poorly understood. Here, we report the HECT-type E3 ubiquitin ligase SMURF2 as a pivotal regulator of ADAR1p110. We show that SMURF2, which is primarily known to promote the ubiquitin-mediated degradation of its protein substrates, protects ADAR1p110 from proteolysis and promotes its A-to-I editase activity in human and mouse cells and tissues. ADAR1p110's interactome analysis performed in human cells also showed a positive influence of SMURF2 on the stability and function of ADAR1p110. Mechanistically, we found that SMURF2 directly binds, ubiquitinates and stabilizes ADAR1p110 in an E3 ubiquitin ligase-dependent manner, through ADAR1p110 ubiquitination at lysine-744 (K744). Mutation of this residue to arginine (K744R), which is also associated with several human disorders, including dyschromatosis symmetrica hereditaria (DSH) and some types of cancer, abolished SMURF2-mediated protection of ADAR1p110 from both proteasomal and lysosomal degradation and inactivated ADAR1p110-mediated RNA editing. Our findings reveal a novel mechanism underlying the regulation of ADAR1 in mammalian cells and suggest SMURF2 as a key cellular factor influencing the protein abundance, interactions and functions of ADAR1p110.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Venkata Narasimha Kadali
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, Milan, Italy
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| |
Collapse
|
3
|
Ilić N, Tao Y, Boutros-Suleiman S, Kadali VN, Emanuelli A, Levy-Cohen G, Blank M. SMURF2-mediated ubiquitin signaling plays an essential role in the regulation of PARP1 PARylating activity, molecular interactions, and functions in mammalian cells. FASEB J 2021; 35:e21436. [PMID: 33734501 DOI: 10.1096/fj.202001759r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key molecular stress sensor and response mediator implicated in multiple cellular functions in health and diseases. Despite its importance and intrinsic involvement in pivotal molecular and cellular processes, including DNA repair, transcription regulation, chromatin organization, and cell death, the regulatory mechanisms of PARP1 are poorly understood. In this study, we show that SMURF2, a HECT-type E3 ubiquitin ligase and suggested tumor suppressor, physically interacts with PARP1 in different cellular settings, directly ubiquitinates it in vitro and stimulates its PARylation activity in cells, the phenomenon that required SMURF2 E3 ubiquitin ligase function. Intriguingly, in the cellular environment SMURF2 was found to regulate the dynamic exchange of ubiquitin moieties on PARP1, mostly decreasing its monoubiquitination. Through the set of systematic mass spectrometry analyses conducted on SMURF2-modified cells, we identified on PARP1 18 lysine residues (out of 126 present in PARP1) as sites which ubiquitination was considerably affected by SMURF2. Subsequent site-directed mutagenesis coupled with in cellula ubiquitination and PARylation assays unveiled K222 as a critical site enabling a cross talk between SMURF2-modulated monoubiquitination of PARP1 and its activity, and pointed to K498, S507, and a KTR triad (K498/K521/K524) as the main auto-PARylation sites affected by SMURF2. The results also uncovered that SMURF2 controls PARP1 interactome, influencing its functions and expression in a context-dependent manner. Taken together, these findings suggest that SMURF2-mediated ubiquitin signaling plays an essential role in PARP1 regulation, beyond the regulation of its protein expression.
Collapse
Affiliation(s)
- Nataša Ilić
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yulei Tao
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Venkata Narasimha Kadali
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Proteome-wide identification and functional analysis of ubiquitinated proteins in peach leaves. Sci Rep 2020; 10:2447. [PMID: 32051488 PMCID: PMC7015887 DOI: 10.1038/s41598-020-59342-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination is a critical post-translational modification machinery that governs a wide range of cellular functions by regulating protein homeostasis. Identification of ubiquitinated proteins and lysine residues can help researchers better understand the physiological roles of ubiquitin modification in different biological systems. In this study, we report the first comprehensive analysis of the peach ubiquitome by liquid chromatography-tandem mass spectrometry-based diglycine remnant affinity proteomics. Our systematic profiling revealed a total of 544 ubiquitination sites on a total of 352 protein substrates. Protein annotation and functional analysis suggested that ubiquitination is involved in modulating a variety of essential cellular and physiological processes in peach, including but not limited to carbon metabolism, histone assembly, translation and vesicular trafficking. Our results could facilitate future studies on how ubiquitination regulates the agricultural traits of different peach cultivars and other crop species.
Collapse
|
5
|
Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, Ding H, Tan S, Chen A, Zhang F, Zheng S. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2019; 16:1482-1505. [PMID: 31679460 DOI: 10.1080/15548627.2019.1687985] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms remain poorly understood. Here, we show that the RNA-binding protein ZFP36/TTP (ZFP36 ring finger protein) plays a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs). Upon exposure to ferroptosis-inducing compounds, the ubiquitin ligase FBXW7/CDC4 (F-box and WD repeat domain containing 7) decreased ZFP36 protein expression by recognizing SFSGLPS motif. FBXW7 plasmid contributed to classical ferroptotic events, whereas ZFP36 plasmid impaired FBXW7 plasmid-induced HSC ferroptosis. Interestingly, ZFP36 plasmid inhibited macroautophagy/autophagy activation by destabilizing ATG16L1 (autophagy related 16 like 1) mRNA. ATG16L1 plasmid eliminated the inhibitory action of ZFP36 plasmid on ferroptosis, and FBXW7 plasmid enhanced the effect of ATG16L1 plasmid on autophagy. Importantly, ZFP36 plasmid promoted ATG16L1 mRNA decay via binding to the AU-rich elements (AREs) within the 3'-untranslated region. The internal mutation of the ARE region abrogated the ZFP36-mediated ATG16L1 mRNA instability, and prevented ZFP36 plasmid-mediated ferroptosis resistance. In mice, treatment with erastin and sorafenib alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific overexpression of Zfp36 impaired erastin- or sorafenib-induced HSC ferroptosis. Noteworthy, we analyzed the effect of sorafenib on HSC ferroptosis in fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, sorafenib monotherapy led to ZFP36 downregulation, ferritinophagy activation, and ferroptosis induction in human HSCs. Overall, these results revealed novel molecular mechanisms and signaling pathways of ferroptosis, and also identified ZFP36-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. ABBREVIATIONS ARE: AU-rich elements; ATG: autophagy related; BECN1: beclin 1; CHX: cycloheximide; COL1A1: collagen type I alpha 1 chain; ELAVL1/HuR: ELAV like RNA binding protein 1; FBXW7/CDC4: F-box and WD repeat domain containing 7; FN1: fibronectin 1; FTH1: ferritin heavy chain 1; GPX4/PHGPx: glutathione peroxidase 4; GSH: glutathione; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; LSEC: liver sinusoidal endothelial cell; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MDA: malondialdehyde; NCOA4: nuclear receptor coactivator 4; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; RBP: RNA-binding protein; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; TP53/p53: tumor protein p53; UTR: untranslated region; ZFP36/TTP: ZFP36 ring finger protein.
Collapse
Affiliation(s)
- Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China
| | - Mei Guo
- Department of Pathogenic biology and Immunology, Medical School, Southeast University , Nanjing, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China
| | - Desong Kong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China
| | - Hai Ding
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine , Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine , Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University , St Louis, USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine , Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine , Nanjing, China
| |
Collapse
|
6
|
Helena JM, Joubert AM, Grobbelaar S, Nolte EM, Nel M, Pepper MS, Coetzee M, Mercier AE. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes. Int J Mol Sci 2018; 19:E1148. [PMID: 29641431 PMCID: PMC5979424 DOI: 10.3390/ijms19041148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA) break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.
Collapse
Affiliation(s)
- Jolene Michelle Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Elsie Magdalena Nolte
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Marcel Nel
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Magdalena Coetzee
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
7
|
Emanuelli A, Borroni AP, Apel-Sarid L, Shah PA, Ayyathan DM, Koganti P, Levy-Cohen G, Blank M. Smurf2-Mediated Stabilization of DNA Topoisomerase IIα Controls Genomic Integrity. Cancer Res 2017; 77:4217-4227. [PMID: 28611047 DOI: 10.1158/0008-5472.can-16-2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/13/2016] [Accepted: 06/09/2017] [Indexed: 11/16/2022]
Abstract
DNA topoisomerase IIα (Topo IIα) ensures genomic integrity and unaltered chromosome inheritance and serves as a major target of several anticancer drugs. Topo IIα function is well understood, but how its expression is regulated remains unclear. Here, we identify the E3 ubiquitin ligase Smurf2 as a physiologic regulator of Topo IIα levels. Smurf2 physically interacted with Topo IIα and modified its ubiquitination status to protect Topo IIα from the proteasomal degradation in dose- and catalytically dependent manners. Smurf2-depleted cells exhibited a reduced ability to resolve DNA catenanes and pathological chromatin bridges formed during mitosis, a trait of Topo IIα-deficient cells and a hallmark of chromosome instability. Introducing Topo IIα into Smurf2-depleted cells rescued this phenomenon. Smurf2 was a determinant of Topo IIα protein levels in normal and cancer cells and tissues, and its levels affected cell sensitivity to the Topo II-targeting drug etoposide. Our results identified Smurf2 as an essential regulator of Topo IIα, providing novel insights into its control and into the suggested tumor-suppressor functions of Smurf2. Cancer Res; 77(16); 4217-27. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Aurora P Borroni
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Liat Apel-Sarid
- Department of Pathology, The Galilee Medical Center, Nahariya, Israel
| | - Pooja A Shah
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
8
|
Bacchi M, Fould B, Jullian M, Kreiter A, Maurras A, Nosjean O, Coursindel T, Puget K, Ferry G, Boutin JA. Screening ubiquitin specific protease activities using chemically synthesized ubiquitin and ubiquitinated peptides. Anal Biochem 2017; 519:57-70. [PMID: 27993553 DOI: 10.1016/j.ab.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Ubiquitin, a 76 amino acid protein, is a key component that contributes to cellular protein homeostasis. The specificity of this modification is due to a series of enzymes: ligases, attaching the ubiquitin to a lysine, and deubiquitinases, which remove it. More than a hundred of such proteins are implicated in the regulation of protein turnover. Their specificities are only partially understood. We chemically synthesized ubiquitin, attached it to lysines belonging to the protein sequences known to be ubiquitinated. We chose the model protein "murine double minute 2" (mdm2), a ubiquitin ligase, itself ubiquitinated and deubiquitinated. We folded the ubiquitinated peptides and checked their tridimensional conformation. We assessed the use of these substrates with a series of fifteen deubiquitinases to show the potentiality of such an enzymological technique. By manipulating the sequence of the peptide on which ubiquitin is attached, we were able to detect differences in the enzyme/substrate recognition, and to determine that these differences are deubiquitinase-dependent. This approach could be used to understand the substrate/protein relationship between the protagonists of this reaction. The methodology could be customized for a given substrate and used to advance our understanding of the key amino acids responsible for the deubiquitinase specificities.
Collapse
Affiliation(s)
- Marine Bacchi
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Benjamin Fould
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Magali Jullian
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Aude Kreiter
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Amélie Maurras
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | - Karine Puget
- Genepep S.A., 12 Rue du Fer à Cheval, 34430 Saint-Jean-de-Védas, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| |
Collapse
|