1
|
Ge S, Chen G, Deng J, Gu Y, Mao Y, Zhou X, Li G. Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson's disease on a SERS-enabled LoC system. Anal Chim Acta 2023; 1247:340890. [PMID: 36781256 DOI: 10.1016/j.aca.2023.340890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
In this paper, a multiplex signal amplification strategy was developed for the determination of miR-214 and miR-221 on a surface-enhanced Raman scattering (SERS)-enabled lab-on-a-chip (LoC) system to realize the early-stage diagnosis of Parkinson's disease (PD). The gold nanobipyramids (GNBPs) with great monodispersity were functionalized with Raman reporter molecules and hairpin DNA 1, serving as the SERS nanotags. The presence of targets can initial the strand displacement amplification (SDA) reaction and the numerous short-stranded trigger DNA (tDNA) can be released under the action of polymerase and nicking enzyme. Then, the tDNA can trigger the catalytic hairpin assembly (CHA) event between the SERS nanotags and the capture nanoprobes (Magnetic beads (MBs) modified with hairpin DNA 2), resulting in the aggregation of GNBPs on the MBs surface. The multiplex signal amplification contributed by the SDA-CHA strategy and the magnet-induced aggregation effect can ultimately lead to the significant improvement of the detection sensitivity and the limit of detection (LOD) was low to aM level with reproducibility and specificity meanwhile. Furthermore, a MPTP-induced PD mice model was established to verify the practicability and the expression level of miR-214 and miR-221 at different stages analyzed with the LoC system was confirmed by qRT-PCR.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China
| | - Gaoyang Chen
- Department of Oncology, The Second People's Hospital of Taizhou City, Taizhou, 225300, PR China
| | - Jialin Deng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Guang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
2
|
Park JC, Na H, Choi S, Jeon H, Nam YS. Target-Catalyzed Self-Assembly of DNA-Streptavidin Nanogel for Enzyme-Free miRNA Assay. Adv Healthc Mater 2022; 12:e2202076. [PMID: 36579651 DOI: 10.1002/adhm.202202076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Rapid, sensitive, specific, and user-friendly microRNA (miRNA) assays are in high demand for point-of-care diagnosis. Target-catalyzed toehold-mediated strand displacement (TMSD) has received increasing attention as an enzyme-free molecular tool for DNA detection. However, the application of TMSD to miRNA targets is challenging because relatively weak DNA/RNA hybridization leads to failure in the subtle kinetic control of multiple hybridization steps. Here, a simple method is presented for miRNA assay based on the one-pot self-assembly of Y-shaped DNAs with streptavidin via an miRNA-catalyzed TMSD cascade reaction. A single miRNA catalyzes the opening cycle of DNA hairpin loops to generate multiple Y-shaped DNAs carrying biotin and a quencher at the end of their arms. Introducing a single base-pair mismatch near the toehold facilitates RNA-triggered strand displacement while barely disturbing nonspecific reactions. The Y-shaped DNAs are self-assembled with fluorescently labeled streptavidin (sAv), which produces nanoscale DNA-sAv nanogel particles mediating efficient Förster resonance energy transfer in their 3D network. The enhancing effect dramatically reduces the detection limit from the nanomolar level to the picomolar level. This work proves that TMSD-based DNA nanogel with a base-pair mismatch incorporated to a hairpin structure is a promising approach towards sensitive and accurate miRNA assay.
Collapse
Affiliation(s)
- Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Bodulev OL, Sakharov IY. Modern Methods for Assessment of microRNAs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:425-442. [PMID: 35790375 DOI: 10.1134/s0006297922050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The review discusses modern methods for the quantitative and semi-quantitative analysis of miRNAs, which are small non-coding RNAs affecting numerous biological processes such as development, differentiation, metabolism, and immune response. miRNAs are considered as promising biomarkers in the diagnosis of various diseases.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Hong CA, Park JC, Na H, Jeon H, Nam YS. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens Bioelectron 2021; 182:113110. [PMID: 33812283 DOI: 10.1016/j.bios.2021.113110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Fast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements. A single-stranded target DNA catalyzes the opening cycle of DNA hairpin loops, which are quickly self-assembled with DNA-functionalized QDs to generate QD-DNA hydrogel. The three-dimensional hydrogel network allows efficient resonance energy transfer, dramatically lowering the limit of detection down to ~6 fM without enzymatic DNA amplification. The QD-DNA hydrogel also enables a rapid detection (1 h) with high specificity even for a single-base mismatch. The clinical applicability of the QD-DNA hydrogel is demonstrated for the Klebsiella pneumoniae carbapenemase gene, one of the key targets of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Feng H, Liu L, Chen Y, Shu W, Huang Y, Zhang B, Wu T, Jin Z, Chen Y. A compact fiber-integrated optofluidic platform for highly specific microRNA Förster resonance energy transfer detection. Analyst 2021; 146:4454-4460. [PMID: 33982715 DOI: 10.1039/d1an00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) have attracted extensive interest as promising biomarkers for the profiling of diseases. However, quantitative measurement of miRNAs presents a significant challenge in biochemical studies. In this work, we developed an innovative optofluidic platform to perform a rapid, simple, quantitative and high-specificity miRNA assay using the Förster resonance energy transfer (FRET) principle. A novel three-way junction FRET probe was proposed to enable rapid and enzyme-free miRNA detection. Using this platform, we performed one-step, amplification-free miRNA detection with simple device operation and achieved miRNA identification at a low concentration. The detection system could achieve high specificity for discrimination of three-base mismatches, and the sample volume was significantly reduced, favorable for low-level miRNA detection in material-limited samples. The establishment of a compact, low-cost, highly sensitive and selective miRNA analysis platform provides a valuable tool for point-of-care diagnosis.
Collapse
Affiliation(s)
- Hongtao Feng
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Lin Liu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yi Chen
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weiliang Shu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuqing Huang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Baoyue Zhang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tianzhun Wu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Zongwen Jin
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yan Chen
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Francés-Soriano L, Leino M, Dos Santos MC, Kovacs D, Borbas KE, Söderberg O, Hildebrandt N. In Situ Rolling Circle Amplification Förster Resonance Energy Transfer (RCA-FRET) for Washing-Free Real-Time Single-Protein Imaging. Anal Chem 2021; 93:1842-1850. [PMID: 33356162 DOI: 10.1021/acs.analchem.0c04828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence signal enhancement via isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence in situ imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to β-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single β-actin proteins. Proximity-dependent FRET could be monitored directly after or during (real-time monitoring) dye or Ln DNA probe incubation and could efficiently distinguish between photoluminescence from β-actin-specific RCA and DNA probes freely diffusing in solution or nonspecifically attached to cells. Moreover, time-gated FRET imaging with the Ln-dye FRET pairs efficiently suppressed sample autofluorescence and improved the signal-to-background ratio. Our results present an important proof of concept of RCA-FRET imaging with a strong potential to advance in situ RCA toward easier sample preparation, higher-order multiplexing, autofluorescence-free detection, and increased dynamic range by real-time monitoring of in situ RCA.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| |
Collapse
|
7
|
Zeng C, Gao J, Lou Y, Cui L. Enzyme-free and protein-assisted dual-amplified fluorescence anisotropy for sensitive miRNA detection in tumor cells. Talanta 2020; 218:121179. [PMID: 32797926 DOI: 10.1016/j.talanta.2020.121179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
We here report a double amplification strategy to construct a fluorescence anisotropy sensor for microRNA analysis in practical biological samples. In this strategy, one target can trigger cyclic catalyzed hairpin assembly (CHA), with streptavidin incorporated as an amplifier of molar mass to enhance the signal intensity. The proposed strategy has a good linearity in the range of 5 pM - 0.5 nM with a detection limit down to 2.3 pM. More importantly, by using fluorescence anisotropy as the signal output, the strategy can be used directly for detection of miRNA in practical samples without any tedious sample pretreatment, holding the practical value in real biological systems.
Collapse
Affiliation(s)
- Chaofei Zeng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Jiafeng Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yifei Lou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
| |
Collapse
|
8
|
DNA Microsystems for Biodiagnosis. MICROMACHINES 2020; 11:mi11040445. [PMID: 32340280 PMCID: PMC7231314 DOI: 10.3390/mi11040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Researchers are continuously making progress towards diagnosis and treatment of numerous diseases. However, there are still major issues that are presenting many challenges for current medical diagnosis. On the other hand, DNA nanotechnology has evolved significantly over the last three decades and is highly interdisciplinary. With many potential technologies derived from the field, it is natural to begin exploring and incorporating its knowledge to develop DNA microsystems for biodiagnosis in order to help address current obstacles, such as disease detection and drug resistance. Here, current challenges in disease detection are presented along with standard methods for diagnosis. Then, a brief overview of DNA nanotechnology is introduced along with its main attractive features for constructing biodiagnostic microsystems. Lastly, suggested DNA-based microsystems are discussed through proof-of-concept demonstrations with improvement strategies for standard diagnostic approaches.
Collapse
|
9
|
Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim YB, Salomon C, Shiddiky MJA. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020; 145:2038-2057. [DOI: 10.1039/c9an02263e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most aggressive of all gynaecological malignancies and is the leading cause of cancer-associated mortality worldwide.
Collapse
Affiliation(s)
- Nahian Binte Aziz
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- School of Chemistry & Molecular Biosciences
| | - Rabbee G. Mahmudunnabi
- Department of Molecular Science Technology and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Muhammad Umer
- Queensland Micro and nanotechnology Centre
- Griffith University
- Nathan Campus
- Australia
| | - Shayna Sharma
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Md Abdur Rashid
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yahya Alhamhoom
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Carlos Salomon
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Muhammad J. A. Shiddiky
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro and nanotechnology Centre
| |
Collapse
|
10
|
Liu Z, Wang Y, Li J, Yuan Y, Wu X, Liu W, Liu Y. A label-free fluorescent enhancement nanosensor for ultrasensitive and highly selective detection of miRNA-378 through signal synergy amplification. Anal Chim Acta 2019; 1087:86-92. [DOI: 10.1016/j.aca.2019.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
11
|
Komori M, Komiya K, Shirakawa T, Morikawa TJ, Yoshimura T. Measurement of microRNA with isothermal DNA amplification on fully automated immunoassay analyzers. Anal Bioanal Chem 2019; 411:3789-3800. [PMID: 31161320 PMCID: PMC6595071 DOI: 10.1007/s00216-019-01878-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) in a blood sample are usually measured by quantitative reverse transcription PCR (qRT-PCR), microarray, and next-generation sequencing (NGS) which requires time-consuming pre-treatment, manual operation, and a stand-alone instrument. To overcome these disadvantages, miRNA testing has been developed using the automated analyzers routinely used in clinical laboratories. An isothermal DNA amplification reaction was adapted to a fully automated immunoassay analyzer that conducts extraction, amplification, and detection processes at 37 °C in 44 min. In a reaction vessel, a pre-designed single-stranded signal DNA was amplified in the presence of miRNA, using DNA templates, DNA polymerase, and nicking endonuclease. Then, the amplified signal DNA was hybridized by one DNA probe attached to a magnetic particle and another DNA probe labeled with acridinium ester. After the chemiluminescence reaction, luminescence intensity was automatically measured. The automated assays of cancer-related miRNAs were implemented on the analyzer with throughput of 66 tests per hour. In the assays with one-step amplification, three miRNAs (miR-21-5p, miR-18a-5p, and miR-500a-3p) at concentrations lower than 100 fM were automatically detected and the cross reactivity for miR-21-5p with fifteen similar miRNAs was not higher than 0.02%. In the assay with two-step amplification, detection sensitivity and amplification rate for miR-21-5p were 3 fM and 103-fold, respectively. The coefficient of variations (CVs) in the measurement at the target concentrations from 5 fM to 1000 pM were less than 8%. Furthermore, we also achieved automated nucleic acid detection in human serum. The proposed fully automated miRNA assays showed high sensitivity, low cross reactivity, and reproducibility suitable for clinical use. Graphical abstract.
Collapse
Affiliation(s)
- Makoto Komori
- Research and Development, Abbott Japan Co. Ltd, 278 Matsuhidai, Matsudo, Chiba, 270-2214, Japan.
| | - Ken Komiya
- School of Computing, Tokyo Institute of Technology, J2-51, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Takuma Shirakawa
- Research and Development, Abbott Japan Co. Ltd, 278 Matsuhidai, Matsudo, Chiba, 270-2214, Japan
| | - Takamitsu J Morikawa
- Research and Development, Abbott Japan Co. Ltd, 278 Matsuhidai, Matsudo, Chiba, 270-2214, Japan
| | - Toru Yoshimura
- Research and Development, Abbott Japan Co. Ltd, 278 Matsuhidai, Matsudo, Chiba, 270-2214, Japan
| |
Collapse
|
12
|
Lozano C, Duroux-Richard I, Firat H, Schordan E, Apparailly F. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? Front Immunol 2019; 10:375. [PMID: 30899258 PMCID: PMC6416164 DOI: 10.3389/fimmu.2019.00375] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that represent important posttranscriptional regulators of protein-encoding genes. In particular, miRNAs play key roles in regulating cellular processes such as proliferation, migration, and cell differentiation. Recently, miRNAs emerged as critical regulators of osteoclasts (OCs) biology and have been involved in OCs pathogenic role in several disorders. OCs are multinucleated cells generated from myeloid precursors in the bone marrow, specialized in bone resorption. While there is a growing number of information on the cytokines and signaling pathways that are critical to control the differentiation of osteoclast precursors (OCPs) into mature OCs, the connection between OC differentiation steps and miRNAs is less well-understood. The present review will first summarize our current understanding of the miRNA-regulated pathways in the sequential steps required for OC formation, from the motility and migration of OCPs to the cell-cell fusion and the final formation of the actin ring and ruffled border in the functionally resorbing multinucleated OCs. Then, considering the difficulty of working on primary OCs and on the generation of robust data we will give an update on the most recent advances in the detection technologies for miRNAs quantification and how these are of particular interest for the understanding of OC biology and their use as potential biomarkers.
Collapse
Affiliation(s)
- Claire Lozano
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Immunology Department, CHU Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
13
|
Qiu X, Xu J, Guo J, Yahia-Ammar A, Kapetanakis NI, Duroux-Richard I, Unterluggauer JJ, Golob-Schwarzl N, Regeard C, Uzan C, Gouy S, DuBow M, Haybaeck J, Apparailly F, Busson P, Hildebrandt N. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem Sci 2018; 9:8046-8055. [PMID: 30542553 PMCID: PMC6249629 DOI: 10.1039/c8sc03121e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in cellular functions and in the development and progression of cancer. Precise quantification of endogenous miRNAs from different clinical patient and control samples combined with a one-to-one comparison to standard technologies is a challenging but necessary endeavor that is largely neglected by many emerging fluorescence technologies. Here, we present a simple, precise, sensitive, and specific ratiometric assay for absolute quantification of miRNAs. Isothermally amplified time-gated Förster resonance energy transfer (TG-FRET) between Tb donors and dye acceptors resulted in miRNA assays with single-nucleotide variant specificity and detection limits down to 4.2 ± 0.5 attomoles. Quantification of miR-21 from human tissues and plasma samples revealed the relevance for breast and ovarian cancer diagnostics. Analysis of miR-132 and miR-146a from acute monocytic leukemia cells (THP-1) demonstrated the broad applicability to different miRNAs and other types of clinical samples. Direct comparison to the gold standard RT-qPCR showed advantages of amplified TG-FRET concerning precision and specificity when quantifying low concentrations of miRNAs as required for diagnostic applications. Our results demonstrate that a careful implementation of rolling circle amplification and TG-FRET into one straightforward nucleic acid detection method can significantly advance the possibilities of miRNA-based cancer diagnostics and research.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Jingyue Xu
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Jiajia Guo
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Akram Yahia-Ammar
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| | - Nikiforos-Ioannis Kapetanakis
- Gustave Roussy , Université Paris-Saclay , CNRS , UMR 8126 , Villejuif , France
- Université Paris-Sud , Université Paris-Saclay , Le Kremlin-Bicêtre , France
| | | | - Julia J Unterluggauer
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
| | - Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
| | - Christophe Regeard
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms (LGBMB) , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France
| | - Catherine Uzan
- Department of Surgery , Gustave Roussy , Université Paris-Saclay , Villejuif , France
- Department of Breast and Gynecologic Surgery , Pitié Salpêtrière Hospital , APHP , Institut Universitaire de Cancérologie , Sorbonne University , INSERM U938 , France
| | - Sébastien Gouy
- Department of Surgery , Gustave Roussy , Université Paris-Saclay , Villejuif , France
| | - Michael DuBow
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms (LGBMB) , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine , Medical University of Graz , Austria
- Department of Pathology , Otto-von-Guericke-University Magdeburg , Germany
- Department of Pathology , Medical University Innsbruck , Austria
| | - Florence Apparailly
- IRMB , INSERM , Univ Montpellier , Montpellier , France
- Clinical Department for Osteoarticular Diseases , University Hospital of Montpellier , Montpellier , France
| | - Pierre Busson
- Gustave Roussy , Université Paris-Saclay , CNRS , UMR 8126 , Villejuif , France
- Université Paris-Sud , Université Paris-Saclay , Le Kremlin-Bicêtre , France
| | - Niko Hildebrandt
- NanoBioPhotonics , Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay , Université Paris-Sud , CNRS , CEA , Orsay , France . ; https://www.nanofret.com
| |
Collapse
|
14
|
Qiu X, Guo J, Xu J, Hildebrandt N. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. J Phys Chem Lett 2018; 9:4379-4384. [PMID: 30016106 DOI: 10.1021/acs.jpclett.8b01944] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoluminescence (PL) multiplexing usually relies on spectral or temporal separation. A combination into higher-order multiplexing for biosensing is extremely challenging because the PL intensity is required for target quantification at very low concentrations and the interplay of color, lifetime, and intensity must be carefully adapted. Here, we demonstrate time-gated Förster resonance energy transfer (TG-FRET) from a long-lifetime Tb complex to Cy3.5 and Cy5.5 dyes for spectrotemporal multiplexing of four different DNA targets in the same sample by single-color excitation and two-color detection. We used rolling circle amplification (RCA) for high specificity and sensitivity and for placing Tb donors and dye acceptors at controlled distances within the amplified DNA concatemers. This precise distance tuning led to target-specific PL decays of the FRET pairs and simple, separation-free, and higher-order multiplexed quantification of DNA. The RCA-FRET DNA assay could distinguish very homologous target sequences and provided limits of detection down to 40 zeptomoles (300 aM).
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Jiajia Guo
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Jingyue Xu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , Orsay 91400 , France
| |
Collapse
|
15
|
Enzyme-free isothermal target-recycled amplification combined with PAGE for direct detection of microRNA-21. Anal Biochem 2018; 550:117-122. [DOI: 10.1016/j.ab.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
|
16
|
Hu J, Liu MH, Zhang CY. Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci 2018; 9:4258-4267. [PMID: 29780556 PMCID: PMC5944210 DOI: 10.1039/c8sc00832a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
The integration of quantum dot-based fluorescence resonance energy transfer with rolling circle amplification enables simultaneous sensitive detection of multiple microRNAs.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate important physiological processes, and their dysregulation is associated with various human diseases. Simultaneous sensitive detection of multiple miRNAs may facilitate early clinical diagnosis. In this research, we demonstrate for the first time the integration of hyperbranched rolling circle amplification (HRCA) with quantum dot (QD)-based fluorescence resonance energy transfer (FRET) for the simultaneous detection of multiple microRNAs with a single-color QD as the donor and two fluorescent dyes as the acceptors. We used miR-21 and miR-221 as target miRNAs. We designed two circular templates which may specifically hybridize with miR-21 and miR-221, respectively, for the initiation of the HRCA reaction. The products of the HRCA reaction may hybridize with both capture probes and reporter probes to form the biotinylated acceptor-labeled sandwich hybrids. The resultant sandwich hybrids can assemble on the surface of the QD, enabling efficient FRET between the QD and the acceptors, with the Cy3 signal indicating the presence of miR-21 and the Texas Red signal indicating the presence of miR-221. This assay has significant advantages of simplicity and low cost. The HRCA reaction can be performed under isothermal conditions with the same reverse primer for different target miRNAs, and the products of the HRCA reaction for both miR-21 and miR-221 can specifically hybridize with the same capture probes. This assay exhibits excellent specificity and high sensitivity with a detection limit of 7.2 × 10–16 M for miR-21 and 1.6 × 10–17 M for miR-221, and it can be used for simultaneous detection of multiple miRNAs in human cancer cells, holding great potential in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86 531 86186033
| |
Collapse
|
17
|
Zhang W, Zhang J, Zhang Q, Hu F, Gu Y. Highly specific real-time quantification of diverse microRNAs in human samples using universal primer set frame. Anal Biochem 2017; 543:71-78. [PMID: 29224731 DOI: 10.1016/j.ab.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023]
Abstract
In this study, one group of universal primer set frame, composed by one reverse transcription (RT) primer frame and a pair of quantitative real-time polymerase chain reaction (qRT-PCR) primer frames, was elaborately screened and designed by homebuilt software for sensitive and specific quantification of diverse miRNAs. The universal primer set frame can be applied for multiplex miRNAs detection by simply changing the RT-X part of RT primer frame and RP-Y part of qRT-PCR reverse primer frame based on target sequence. The maximum similarity of RT-Y, RT-Z and qRT-PCR forward primer to the human genome and human transcriptome is less than 76%, ensuring the high specificity in human sample detection. The high sensitivity and broad dynamic linear range of the developed approaches by using designed primer set frame were demonstrated on the in vitro detection of miR-21 and miR-155, with dynamic range of 10 fM to 10 nM and detection limit of 3.74 × 10-15 M and 5.81 × 10-15 M for miR-21 and miR-155, respectively. In particular, the developed assays also have high sequence specificity which could clearly discriminate a single base difference in miRNA sequence. The contents of miR-21 and miR-155 in tissue and serum samples have been successfully detected using the developed assays. Results indicated that miR-21 and miR-155 were elevated in cancer tissue and serum specimens than that of normal samples, implying the developed assays hold a great promise for further application in biomedical research and early clinical diagnosis. More importantly, the primer set frame can be universally used in any miRNA investigation.
Collapse
Affiliation(s)
- Wancun Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 210009 Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 210009 Nanjing, China
| | - Qi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 210009 Nanjing, China
| | - Fang Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 210009 Nanjing, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 210009 Nanjing, China.
| |
Collapse
|
18
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
19
|
Borghei YS, Hosseini M, Ganjali MR. Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2512-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|