1
|
Rasooly Heshteli R, Paimard G, Adabi M, Esmaeili S. Advances in biosensors: A breakthrough in rapid and precise brucellosis detection. Anal Biochem 2025; 700:115782. [PMID: 39884527 DOI: 10.1016/j.ab.2025.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Brucellosis, a significant zoonotic disease, poses a threat to both livestock and human health. Infections in livestock lead to abortion, infertility, and substantial economic losses in the industry. In humans, acute brucellosis can progress to a chronic condition, resulting in multisystemic infections with high morbidity and mortality rates. Additionally, the bioterrorism potential of certain Brucella species through aerosol transmission poses risks to laboratory workers and livestock handlers. Therefore, there is an urgent need for rapid and precise diagnosis of brucellosis in both animals and humans. Even with the availability of routine diagnostic techniques that are effective they frequently have some limitations. Biosensors, as innovative techniques, have demonstrated significant potential in detecting various pathogens with high efficiency. These biosensors can identify specific analytes, biomolecules of pathogenic bacteria, secreted antibodies against bacteria, and even the bacterial body in real time. Their high sensitivity, selectivity, and user-friendly configurations make them valuable tools for diagnostics. In this comprehensive review, beside the reviewing routine diagnostic tests for detecting brucellosis and discussing the positive and negative aspects of these methods, we explore different types of biosensors and their applications in diagnosing brucellosis. We hope to show how these advancements can result in quicker and more precise disease detection by offering a thorough evaluation of these technologies performance and contrasting it with more conventional diagnostic techniques. This improves patient outcomes by lowering the complications linked to delayed diagnosis in addition to advancing scientific knowledge of brucellosis.
Collapse
Affiliation(s)
- Roya Rasooly Heshteli
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran.
| | - Saber Esmaeili
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran.
| |
Collapse
|
2
|
Khanal S, Pillai M, Biswas D, Torequl Islam M, Verma R, Kuca K, Kumar D, Najmi A, Zoghebi K, Khalid A, Mohan S. A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques. EXCLI JOURNAL 2024; 23:1245-1275. [PMID: 39574968 PMCID: PMC11579516 DOI: 10.17179/excli2024-7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024]
Abstract
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Collapse
Affiliation(s)
- Sonali Khanal
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manjusha Pillai
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deblina Biswas
- Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava,70800, Ostrava-Poruba, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P. O. Box 114, Jazan, 82511, Saudi Arabia
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Khaleque MA, Hossain SI, Ali MR, Aly Saad Aly M, Abuelmakarem HS, Al Mamun MS, Hossain Khan MZ. Bioreceptor modified electrochemical biosensors for the detection of life threating pathogenic bacteria: a review. RSC Adv 2024; 14:28487-28515. [PMID: 39247512 PMCID: PMC11378029 DOI: 10.1039/d4ra04038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The lack of reliable and efficient techniques for early monitoring to stop long-term effects on human health is an increasing problem as the pathogenesis effect of infectious bacteria is growing continuously. Therefore, developing an effective early detection technique coupled with efficient and continuous monitoring of pathogenic bacteria is increasingly becoming a global public health prime target. Electrochemical biosensors are among the strategies that can be utilized for accomplishing that goal with promising potential. In recent years, identifying target biological analytes by interacting with bioreceptors modified electrodes is among the most commonly used detection techniques in electrochemical biosensing strategies. The commonly employed bioreceptors are nucleic acid molecules (DNA or RNA), proteins, antibodies, enzymes, organisms, tissues, and biomimetic components such as molecularly imprinted polymers. Despite the advancement in electrochemical biosensing, developing a reliable and effective biosensor for detecting pathogenic bacteria is still in the infancy stage with so much room for growth. A major milestone in addressing some of the issues and improving the detection pathway is the investigation of specific bacterial detection techniques. The present study covers the fundamental concepts of electrochemical biosensors, human PB illnesses, and the latest electrochemical biosensors based on bioreceptor elements that are designed to detect specific pathogenic bacteria. This study aims to assist researchers with the most up-to-date research work in the field of bio-electrochemical pathogenic bacteria detection and monitoring.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Syed Imdadul Hossain
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Centre for Sophisticated Instrumentation and Research Laboratory (CSIRL), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Romzan Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI) Shenzhen Guangdong 518055 China
| | - Hala S Abuelmakarem
- Systems and Biomedical Engineering Department, The Higher Institute of Engineering El Shorouk Egypt
| | - Muhammad Shamim Al Mamun
- Chemistry Discipline, School of Science, Engineering and Technology, Khulna University Khulna 9208 Bangladesh
| | - Md Zaved Hossain Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
4
|
Abuawad A, Ashhab Y, Offenhäusser A, Krause HJ. DNA Sensor for the Detection of Brucella spp. Based on Magnetic Nanoparticle Markers. Int J Mol Sci 2023; 24:17272. [PMID: 38139102 PMCID: PMC10744106 DOI: 10.3390/ijms242417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.
Collapse
Affiliation(s)
- Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Yaqoub Ashhab
- Palestine–Korea Biotechnology Center, Palestine Polytechnic University, Hebron P720, Palestine
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
| |
Collapse
|
5
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
ZHAO Q, YU H, HU D, LI LL, JIN J, AI MJ, WEI J, SONG K. Recent advances in electrochemical sensors based on palladium nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Manessis G, Gelasakis AI, Bossis I. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. BIOSENSORS 2022; 12:455. [PMID: 35884258 PMCID: PMC9312888 DOI: 10.3390/bios12070455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Zoonoses and animal diseases threaten human health and livestock biosecurity and productivity. Currently, laboratory confirmation of animal disease outbreaks requires centralized laboratories and trained personnel; it is expensive and time-consuming, and it often does not coincide with the onset or progress of diseases. Point-of-care (POC) diagnostics are rapid, simple, and cost-effective devices and tests, that can be directly applied on field for the detection of animal pathogens. The development of POC diagnostics for use in human medicine has displayed remarkable progress. Nevertheless, animal POC testing has not yet unfolded its full potential. POC devices and tests for animal diseases face many challenges, such as insufficient validation, simplicity, and portability. Emerging technologies and advanced materials are expected to overcome some of these challenges and could popularize animal POC testing. This review aims to: (i) present the main concepts and formats of POC devices and tests, such as lateral flow assays and lab-on-chip devices; (ii) summarize the mode of operation and recent advances in biosensor and POC devices for the detection of farm animal diseases; (iii) present some of the regulatory aspects of POC commercialization in the EU, USA, and Japan; and (iv) summarize the challenges and future perspectives of animal POC testing.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
9
|
de Castro ACH, Kochi LT, Flauzino JMR, Soares MMCN, Alves VA, da Silva LA, Madurro JM, Brito-Madurro AG. Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma. Appl Biochem Biotechnol 2022; 194:2604-2619. [PMID: 35182331 DOI: 10.1007/s12010-022-03829-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
In this work, we report the construction of a novel electrochemical device for molecular diagnosis of hepatitis B virus in the blood plasma of infected patients, using graphite electrodes functionalized with poly(4-aminophenol) and sensitized with a specific DNA probe. The recognition of genomic DNA was evaluated by electrochemical techniques (DPV and EIS) and scanning electron microscopy. The genosensor was efficient in detecting genomic DNA with a linear range from 1.176 to 4.825 μg mL-1 and detection limit of 35.69 ng mL-1 (4.63 IU ml-1 or 25.93 copies.ml-1), which is better than the 10.00 IU ml-1 limit of reference method, real-time PCR, used in point of care. EIS analysis shows that the genosensor resistance increased exponentially with the concentration of the genomic DNA target. This novel platform has advantages to its applicability in real samples, such as good sensitivity, selectivity, low sample volume, and fast assay time (36 min), thus interesting for application in the diagnosis of hepatitis B virus in blood plasma. Also, the ease of synthesis of the low-cost polymer by electrosynthesis directly on the electrode surface allows the translation of the platform to portable devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - João Marcos Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
10
|
Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|
12
|
Dehdari Vais R, Yadegari H, Heli H, Sattarahmady N. A β-Amyloid (1-42) Biosensor Based on Molecularly Imprinted Poly-Pyrrole for Early Diagnosis of Alzheimer's Disease. J Biomed Phys Eng 2021; 11:215-228. [PMID: 33937128 PMCID: PMC8064131 DOI: 10.31661/jbpe.v0i0.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Background: Alzheimer’s disease (AD) is a common form of dementia, characterized by production and deposition of β-amyloid peptide in the brain.
Thus, β-amyloid peptide is a potentially promising biomarker used to diagnose and monitor the progression of AD. Objective: The study aims to develop a biosensor based on a molecularly imprinted poly-pyrrole for detection of β-amyloid. Material and Methods: In this experimental study, an imprinted poly-pyrrole was employed as an artificial receptor synthesized by electro-polymerization of pyrrole
on screen-printed carbon electrodes in the presence of β-amyloid. β-amyloid acts as a molecular template within the polymer. The biosensor was
evaluated by cyclic voltammetry using ferro/ferricyanide marker. The parameters influencing the biosensor performance, including electro-polymerization
cycle umbers and β-amyloid binding time were optimized to achieve the best biosensor sensitivity. Results: The β-amyloid binding affinity with the biosensor surface was evaluated by the Freundlich isotherm, and Freundlich
constant and exponent were obtained as 0.22 ng mL-1 and 10.60, respectively. The biosensor demonstrated a detection limit of 1.2 pg mL-1.
The biosensor was applied for β-amyloid determination in artificial cerebrospinal fluid. Conclusion: The biosensor is applicable for early Alzheimer’s disease detection.
Collapse
Affiliation(s)
- Rezvan Dehdari Vais
- PhD Candidate, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Yadegari
- PhD, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Hossein Heli
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Ilbeigi S, Dehdari Vais R, Sattarahmady N. Photo-genosensor for Trichomonas vaginalis based on gold nanoparticles-genomic DNA. Photodiagnosis Photodyn Ther 2021; 34:102290. [PMID: 33839330 DOI: 10.1016/j.pdpdt.2021.102290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 01/19/2023]
Abstract
Trichomoniasis, an infectious disease caused by a parasite called Trichomonas vaginalis (T. vaginalis), enhances the risk of HIV infection, cervical and prostate cancer, and infertility. Therefore, efforts have to be made for accurate, specific, and rapid diagnosise and treatment of trichomoniasis. Today, optical nanosensors have created an opportunity for diagnosis without sophisticated and expensive tools and the need for expertise; at the same time, they are highly sensitive and fast. An optical nano-genosensor was designed by conjugation of gold nanoparticles and a specific oligonucleotide (AuNPs-probe) from repeated DNA target for specific and sensitive polymerase chain reaction diagnosis of T. vaginalis gene sequence (L23861.1). The hybridization of AuNPs-probe was investigated with different concentrations of complementary sequence in synthesized target, gene sequence of standard T. vaginalis genomic DNA extraction, and PCR products of genomic DNA samples extracted from patients. Negative samples including synthesized non-complementary sequence, genomics DNA of other pathogens, and genomics DNA of healthy persons were considered for proof of the accuracy of the sensor function. The occurrence of correct hybridization was detected by adding acid to the medium and observing the changes in the color of the medium and spectroscopic spectrum. Based on spectrophotometric results, the fabricated genosensor had detection limits of 35.16 and 31 pg μL-1 for the detection of synthetic target and genomic DNA sequences, respectively. The results confirmed the correct function of genosensor for the detection of T. vaginalis in clinical samples. Advantages such as low cost, visual detection, speed, and easy diagnosis encourage the use of this sensor in pathogen detection in the future.
Collapse
Affiliation(s)
- S Ilbeigi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115906] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
M A, M K, H H. Study of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions. J Biomed Phys Eng 2020; 10:39-50. [PMID: 32158710 PMCID: PMC7036415 DOI: 10.31661/jbpe.v0i0.1092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023]
Abstract
Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein) Material and Methods: In this experimental study, fibroin was extracted from bombyx mori silk cocoon, and the concentration was obtained by Bradford method. The protein was incubated in a wide range of times (0 min to 7 days) in specific acidity and thermal conditions (pH=1.6, T=70 °C). The assays of UV-vis spectroscopy with congo red, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy and circular dichroism spectroscopy were employed to monitor the fibrillation process. Results: Fibroin assemblies were formed upon the process of aggregation and fibril formation with a variety of morphology ranging from nanoparticles to elongated fibrils. Conclusion: The results showed progressive pathway of fibril formation
Collapse
Affiliation(s)
- Ahrami M
- MSc, Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khatami M
- MSc, NanoBioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Heli H
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Behzadpour N, Sattarahmady N, Akbari N. Antimicrobial Photothermal Treatment of Pseudomonas Aeruginosa by a Carbon Nanoparticles-Polypyrrole Nanocomposite. J Biomed Phys Eng 2019; 9:661-672. [PMID: 32039097 PMCID: PMC6943850 DOI: 10.31661/jbpe.v0i0.1024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, it is needed to explore new routes to treat infectious bacterial pathogens due to prevalence of antibiotic-resistant bacteria. Antimicrobial photothermal therapy (PTT), as a new strategy, eradicates pathogenic bacteria. OBJECTIVE In this study, the antimicrobial effects of a carbon nanoparticles-polypyrrole nanocomposite (C-PPy) upon laser irradiation were investigated to destroy the pathogenic gram-negative Pseudomonas aeruginosa. MATERIAL AND METHODS In this experimental study, the bacterial cells were incubated with 50, 100 and 250 µg mL-1 concentrations of C-PPy and irradiated with a 808-nm laser at two power densities of 0.5 and 1.0 W cm-2. CFU numbers were counted for the irradiated cells, and compared to an untreated sample (kept in dark). To explore the antibacterial properties and mechanism(s) of C-PPy, temperature increment, reactive oxygen species formation, and protein and DNA leakages were evaluated. Field emission scanning electron microscopy was also employed to investigate morphological changes in the bacterial cell structures. RESULTS The results showed that following C-PPy attachment to the bacteria surface, irradiation of near-infrared light resulted in a significant decrement in the bacterial cell viability due to photothermal lysis. Slightly increase in protein leakage and significantly increase intracellular reactive oxygen species (ROS) were observed in the bacteria upon treating with C-PPy. CONCLUSION Photo-ablation strategy is a new minimally invasive and inexpensive method without overdose risk manner for combat with bacteria.
Collapse
Affiliation(s)
- N Behzadpour
- MSc, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Akbari
- PhD, Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
18
|
Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal Biochem 2019; 579:25-34. [PMID: 31128087 DOI: 10.1016/j.ab.2019.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/20/2022]
Abstract
Livestock are critical component for supporting the sustainable agriculture in the current global scenario. In the era of artificial intelligence and automation in field of livestock, sensors play an important role. Electrochemical sensor is the type of sensor which holds reliability and tremendous promise in raising the animal productivity in developing world. An early and accurate diagnosis of the animal pathogen and metabolic status are the cornerstone for better animal productivity. The available diagnostic techniques require tedious sample preparation, sophisticated instrument, dedicated laboratory, trained personnel and it is time consuming also. The electrochemical biosensor technology might be a smart solution because of its sensitivity, simplicity, low cost, possible miniaturization and potential ability for real-time analysis. In the veterinary disease diagnostics, various biosensors including electrochemical biosensors have been developed recently, based on disease specific biomarkers. The main focus of article is on reviewing the research in detection of animal infectious and metabolic diseases, hormonal analysis and sweat analysis with electrochemical biosensor.
Collapse
|
19
|
Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Baltierra-Uribe SL, Chanona-Pérez JJ, Méndez-Méndez JV, Perea-Flores MDJ, Sánchez-Chávez AC, García-Pérez BE, Moreno-Lafont MC, López-Santiago R. Detection of Brucella abortus by a platform functionalized with protein A and specific antibodies IgG. Microsc Res Tech 2019; 82:586-595. [PMID: 30637865 DOI: 10.1002/jemt.23206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/29/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023]
Abstract
Oriented immobilization of antibodies on a sensor surface is critical for enhancing both the antigen-binding capacity and the sensitivity of immunosensors. In this study, we describe a strategy to adsorb immunoglobulin G (IgG) anti-Brucella antibodies onto a silicon surface, oriented by protein A obtained from Staphylococcus aureus (SpA). X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize topographically, morphologically, and chemical changes of the sensor functionalization. The activity of the biosensor was assessed by confocal microscopy, scanning electronic microscopy, and bacteria capture assays (BCA). According to the BCA, the efficiency of Brucella abortus detection with the SpA-IgG anti Brucella biosensor was three-fold higher than that of the random orientated IgG anti Brucella biosensor. The limit of detection was 1 × 106 CFU/ml. These data show that the orientation of antibodies immobilization is crucial to developing immunosensors for bacterial antigen detection as Brucella spp and improve its sensibility level. Functionalization with protein A increases Brucella detection by an antibody-coated surface. Functionalized silicon surface for Brucella detection was characterized by atomic force microscopy, X-ray photoelectron spectroscopy and confocal microscopy.
Collapse
Affiliation(s)
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | | | - Anahí Carolina Sánchez-Chávez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Rubén López-Santiago
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
21
|
Alizadeh N, Salimi A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. ELECTROANAL 2018. [DOI: 10.1002/elan.201800598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Negar Alizadeh
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
| | - Abdollah Salimi
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
- Research Center for NanotechnologyUniversity of Kurdistan 66177-15175 Sanandaj Iran
| |
Collapse
|
22
|
Nazari-Vanani R, Sattarahmady N, Yadegari H, Delshadi N, Hatam GR, Heli H. Electrochemical quantitation of Leishmania infantum based on detection of its kDNA genome and transduction of non-spherical gold nanoparticles. Anal Chim Acta 2018; 1041:40-49. [PMID: 30340689 DOI: 10.1016/j.aca.2018.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
Detecting and monitoring the pathogens with high selectivity and sensitivity is critical for public health. In the present study, we demonstrated a specific analytical strategy for sensitive detection of Leishmania infantum genome. The developed sensor utilized toluidine blue as a hybridization indicator and a Leishmania infantum-specific capture DNA sequence immobilized on a high-surface area gold nanostructure as an electrochemical transducer. The produced analytical response was based on the hybridization of the single-stranded DNA from the target with the immobilized DNA sequence at the electrode surface. The developed DNA sensor in this study was successfully employed to detect a synthetic Leishmania infantum target sequence in a wide concentration range from 1 × 10-18 to 1 × 10-10 mol L-1 with a detection limit of 0.2 amol L-1 with the ability to discriminate the target sequence from mismatched sequences. Moreover, the designed DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles. The DNA sensor could detect Leishmania infantum genome in a wide concentration range from 15 to 50 ng μL-1 with a detection limit of 29 ng μL-1. Furthermore, clinical trials confirmed the applicability of the developed DNA sensor for practical applications.
Collapse
Affiliation(s)
- R Nazari-Vanani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Yadegari
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - N Delshadi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Fars Academic Center for Education, Culture and Research, Shiraz, Iran
| | - G R Hatam
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B Biointerfaces 2018; 166:245-253. [DOI: 10.1016/j.colsurfb.2018.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
|
24
|
Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103:113-129. [DOI: 10.1016/j.bios.2017.12.031] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
|
25
|
Sattarahmady N, Rahi A, Heli H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci Rep 2017; 7:11238. [PMID: 28894225 PMCID: PMC5593896 DOI: 10.1038/s41598-017-11680-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023] Open
Abstract
A green electrodeposition method was firstly employed for the synthesis of round hairbrush-like gold nanostructure in the presence of cadaverine as a size and shape directing additive. The nanostructure which comprised of arrays of nanospindles was then applied as a transducer to fabricate a signal-on built in-marker electrochemical aptasensor for the detection of human prostate-specific antigen (PSA). The aptasensor detected PSA with a linear concentration range of 0.125 to 128 ng mL-1 and a limit of detection of 50 pg mL-1. The aptasensor was then successfully applied to detect PSA in the blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amid Rahi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal Chim Acta 2017; 979:51-57. [DOI: 10.1016/j.aca.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 02/01/2023]
|
27
|
Sattarahmady N, Rezaie-Yazdi M, Tondro G, Akbari N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 166:323-332. [DOI: 10.1016/j.jphotobiol.2016.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 11/27/2022]
|
28
|
Moradi M, Sattarahmady N, Rahi A, Hatam GR, Sorkhabadi SMR, Heli H. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta 2016; 161:48-53. [PMID: 27769435 DOI: 10.1016/j.talanta.2016.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10-10 to 1.0×10-19molL-1 with a limit of detection of 1.8×10-20molL-1, and genomic DNA in a range of 0.5-20ngμL-1 with a limit of detection of 0.07ngμL-1. The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples.
Collapse
Affiliation(s)
- M Moradi
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Rahi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G R Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S M Rezayat Sorkhabadi
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|