1
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
2
|
Usai R, Denisov IG, Sligar SG, Kincaid JR. Cryoradiolysis of oxygenated cytochrome P450 17A1 with lyase substrates generates expected products. J Inorg Biochem 2024; 257:112582. [PMID: 38723329 DOI: 10.1016/j.jinorgbio.2024.112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
When subjected to γ-irradiation at cryogenic temperatures the oxygenated complexes of Cytochrome P450 CYP17A1 (CYP17A1) bound with either of the lyase substrates, 17α-Hydroxypregnenolone (17-OH PREG) or 17α-Hydroxyprogesterone (17-OH PROG) are shown to generate the corresponding lyase products, dehydroepiandrosterone (DHEA) and androstenedione (AD) respectively. The current study uses gas chromatography-mass spectrometry (GC/MS) to document the presence of the initial substrates and products in extracts of the processed samples. A rapid and efficient method for the simultaneous determination of residual substrate and products by GC/MS is described without derivatization of the products. It is also shown that no lyase products were detected for similarly treated control samples containing no nanodisc associated CYP17 enzyme, demonstrating that the product is formed during the enzymatic reaction and not by GC/MS conditions, nor the conditions produced by the cryoradiolysis process.
Collapse
Affiliation(s)
- Remigio Usai
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA; Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James R Kincaid
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
3
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
4
|
Inhibition of cytochrome P450 2B6 by Astragalus extract mixture HT042. Toxicol Res 2020; 36:195-201. [PMID: 32685423 DOI: 10.1007/s43188-019-00027-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 10/24/2022] Open
Abstract
Astragalus extract mixture (AEM) HT042 is a functional food approved by the MFDS (Korean FDA) for increasing height. It comprises a mixture of three standardized extracts from Astragalus membranaceus root, Eleutherococcus senticosus stem, and Phlomis umbrosa root. In this study, drug-functional food interaction was analyzed using six major human cytochrome P450 enzymes. The inhibitory effect of AEM HT042 on P450 activities was studied using a P450-NADPH P450 reductase reconstitution system. Among the six P450 enzymes (1A2, 2A6, 2B6, 2D6, 2C9, and 3A4), only P450 2B6 activity was markedly decreased by AEM HT042 addition. The bupropion hydroxylation activity of P450 2B6 was analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A calculated IC50 value of 10.62 µg/ml was obtained. To identify the inhibitory compounds in the mixture, four active compounds in AEM HT042 were analyzed. Shanzhiside methylester exhibited inhibitory effects on P450 2B6, whereas formononetin, eleutheroside E, and sesamoside did not affect P450 2B6 activity at all. Our results suggest that shanzhiside methylester in AEM HT042 is responsible for the inhibitory effect on P450 2B6 metabolism. Characterization of the inhibitory effect on P450 can help determine the safe administration of functional foods along with many clinical drugs that are metabolized by P450.
Collapse
|
5
|
Challenges of probe cocktail approach for human drug-drug interaction assays. Bioanalysis 2018; 10:1969-1972. [PMID: 30301378 DOI: 10.4155/bio-2018-0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Ung YT, Ong CE, Pan Y. Current High-Throughput Approaches of Screening Modulatory Effects of Xenobiotics on Cytochrome P450 (CYP) Enzymes. High Throughput 2018; 7:ht7040029. [PMID: 30274310 PMCID: PMC6306765 DOI: 10.3390/ht7040029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 (CYP) is a critical drug-metabolizing enzyme superfamily. Modulation of CYP enzyme activities has the potential to cause drug–drug/herb interactions. Drug–drug/herb interactions can lead to serious adverse drug reactions (ADRs) or drug failures. Therefore, there is a need to examine the modulatory effects of new drug entities or herbal preparations on a wide range of CYP isoforms. The classic method of quantifying CYP enzyme activities is based on high-performance liquid chromatography (HPLC), which is time- and reagent-consuming. In the past two decades, high-throughput screening methods including fluorescence-based, luminescence-based, and mass-spectrometry-based assays have been developed and widely applied to estimate CYP enzyme activities. In general, these methods are faster and use lower volume of reagents than HPLC. However, each high-throughput method has its own limitations. Investigators may make a selection of these methods based on the available equipment in the laboratory, budget, and enzyme sources supplied. Furthermore, the current high-throughput systems should look into developing a reliable automation mechanism to accomplish ultra-high-throughput screening in the near future.
Collapse
Affiliation(s)
- Yee Tze Ung
- Department of Biomedical Science, the University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Yan Pan
- Department of Biomedical Science, the University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| |
Collapse
|
7
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
8
|
Abstract
By the turn of the twenty-first century, the use of nutraceuticals became increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have a toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies appears to play a pivotal role in safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors influencing their safety.
Collapse
|
9
|
Hu M, Piller NB. Strategies for Avoiding Benzopyrone Hepatotoxicity in Lymphedema Management-The Role of Pharmacogenetics, Metabolic Enzyme Gene Identification, and Patient Selection. Lymphat Res Biol 2017; 15:317-323. [PMID: 29087786 DOI: 10.1089/lrb.2017.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Benzopyrones are plant-derived chemicals which have an evidenced degree of clinical efficacy in lymphedema management indicated in past trials. Unfortunately, in some of these cases idiosyncratic hepatotoxicity have been documented in a minority of patients. This review aims to tackle the problem of benzopyrone (particularly coumarin) toxicity by considering their metabolic pathways and identifying relevant alleles needed to take a targeted pharmacogenetic approach in its future use. METHODS AND RESULTS The nontoxic 7-hydroxylation and the toxic heterocyclic "ring-splitting" epoxidation pathways are the two main detoxification pathways in the hepatometabolism of coumarin, the former catalyzed by CYP2A6 and the latter by possibly CYP1A and CYP2E. Acetaldehyde dehydrogenase (ALDH) clears toxic aldehyde intermediates. CYP2A6 polymorphism screening methods, including genotyping, by real-time polymerase chain reaction and chromatography-mass spectroscopy functional metabolite assays; efficiency of these techniques are continually improving. ALDH polymorphisms have also been implicated, with clinically viable screening tests, rapid genotyping, and sensitive questionnaires already available for ALDH2*1/ALDH2*2. Dysfunctional polymorphisms of the above genes and others are significantly more prevalent in Eastern Asian populations, uncommon in Caucasian populations. The role of other enzymes/genes in the pathway is yet to be clarified. CONCLUSION Although screening techniques are becoming increasingly clinically feasible, uncertainty remains on the link between the genotype, metabolic phenotype, and the exact gene products involved. These must be elucidated further before a targeted pharmacogenomic approach is fully viable. In the meantime, treatment should be avoided in those with vulnerable familial and ethnic descents if used.
Collapse
Affiliation(s)
- Minhao Hu
- 1 School of Medicine, Flinders University , South Australia, Australia
| | - Neil B Piller
- 2 Lymphoedema Clinical Research Unit , Department of Surgery, Flinders Medical Centre, South Australia, Australia
| |
Collapse
|
10
|
Xu Z, Liu R, Guan H. Dual-target inhibitor screening against thrombin and factor Xa simultaneously by mass spectrometry. Anal Chim Acta 2017; 990:1-10. [PMID: 29029731 DOI: 10.1016/j.aca.2017.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
An accurate, rapid, and cost-effective methodology for enzyme assay is highly demanded to screen the effect of compounds on target at the molecular level. Thrombin (EC 3.4.21.5) and factor Xa (FXa, EC 3.4.21.6) have been identified as the critical targets for the development of potential drugs with anticoagulant activity. In this study, a rapid, sensitive and accurate assay based on UHPLC-MS/MS method has been developed for inhibitor screening against thrombin and factor Xa simultaneously. For thrombin and factor Xa, the Michaelis-Menten constants (Km) were calculated to be 6.14 and 57.27 μM, respectively. The inhibition constants (Ki) for two known inhibitors, argatroban and rivaroxaban, were determined to be 16.23 and 0.41 nM, respectively. The assay was further validated through the determination of a high Z' factor value of 0.89. Finally, the developed assay was applied to screen a chemical library against two enzymes. Three hit compounds belonging to a class of sulfated polysaccharides were identified and their targets of inhibition action were further evaluated. The results indicated that the dual-target assay by UHPLC-MS/MS analysis could be used as a reliable method for screening anticoagulant agents.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266271, China.
| | - Ruonan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266271, China
| |
Collapse
|