1
|
Takata T, Inoue S, Kunii K, Masauji T, Miyazawa K. Slot Blot- and Electrospray Ionization-Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine. Int J Mol Sci 2024; 25:9632. [PMID: 39273579 PMCID: PMC11395049 DOI: 10.3390/ijms25179632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
2
|
Lan T, Dong Y, Jiang L, Zhang Y, Sui X. Analytical approaches for assessing protein structure in protein-rich food: A comprehensive review. Food Chem X 2024; 22:101365. [PMID: 38623506 PMCID: PMC11016869 DOI: 10.1016/j.fochx.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Springer V, Zhou Y, Aguilera ÁY, Emmer Å. User-friendly platform for analysis of high mass intact proteins and glycopeptides by laser desorption/ionization-mass spectrometry based on copper oxide particles. Anal Bioanal Chem 2024; 416:861-872. [PMID: 38062198 PMCID: PMC10800303 DOI: 10.1007/s00216-023-05072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) based on micro/nanostructured materials with different natures has received increasing attention for the analysis of a wide variety of analytes. However, up to now, only a few studies have shown the application of simple platforms in MALDI-MS for the identification of intact proteins. The present work reports on the application of copper oxide particles (Cu2O PS), obtained by a greener route, in combination with low amounts of 2,5-dihydroxybenzoic acid (DHB) as a novel hybrid platform. The combined Cu2O PS@DHB matrix, containing only 2.5 mg mL-1 of particles and 10 mg mL-1 of DHB, was easily applicable in MALDI-MS without surface modification of target plates. Under optimal conditions, the analysis of intact proteins up to 150,000 Da was possible, including immunoglobulin G, bovine serum albumin, and cytochrome C with adequate spot-to-spot signal reproducibility (RSD < 10%). In addition, the analysis of glycopeptides from IgG digests was carried out to prove the multipurpose application of the Cu2O PS@DHB platform in the low m/z range (2500-3000 Da). From the obtained results, it can be concluded that the optical and surface properties of as-synthesized Cu2O PS are likely to be responsible for the superior performance of Cu2O PS@DHB in comparison with conventional matrices. In this sense, the proposed user-friendly methodology opens up the prospect for possible implementation in bioanalysis and diagnostic research.
Collapse
Affiliation(s)
- Valeria Springer
- INQUISUR - Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, B8000CPB, Bahía Blanca, Buenos Aires, Argentina
| | - Yuye Zhou
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ángela Y Aguilera
- INQUISUR - Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, B8000CPB, Bahía Blanca, Buenos Aires, Argentina
| | - Åsa Emmer
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
Takata T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites 2023; 13:metabo13040564. [PMID: 37110222 PMCID: PMC10144988 DOI: 10.3390/metabo13040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry (MS), matrix-associated laser desorption/ionization-MS, and liquid chromatography-electrospray ionization-MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
5
|
Khajavinia A, El-Aneed A. Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Anal Chem 2023; 95:100-114. [PMID: 36625120 DOI: 10.1021/acs.analchem.2c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Svetličić E, Dončević L, Ozdanovac L, Janeš A, Tustonić T, Štajduhar A, Brkić AL, Čeprnja M, Cindrić M. Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing. Molecules 2022; 27:molecules27175461. [PMID: 36080229 PMCID: PMC9457756 DOI: 10.3390/molecules27175461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
For mass spectrometry-based diagnostics of microorganisms, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used to identify urinary tract pathogens. However, it requires a lengthy culture step for accurate pathogen identification, and is limited by a relatively small number of available species in peptide spectral libraries (≤3329). Here, we propose a method for pathogen identification that overcomes the above limitations, and utilizes the MALDI-TOF/TOF MS instrument. Tandem mass spectra of the analyzed peptides were obtained by chemically activated fragmentation, which allowed mass spectrometry analysis in negative and positive ion modes. Peptide sequences were elucidated de novo, and aligned with the non-redundant National Center for Biotechnology Information Reference Sequence Database (NCBInr). For data analysis, we developed a custom program package that predicted peptide sequences from the negative and positive MS/MS spectra. The main advantage of this method over a conventional MALDI-TOF MS peptide analysis is identification in less than 24 h without a cultivation step. Compared to the limited identification with peptide spectra libraries, the NCBI database derived from genome sequencing currently contains 20,917 bacterial species, and is constantly expanding. This paper presents an accurate method that is used to identify pathogens grown on agar plates, and those isolated directly from urine samples, with high accuracy.
Collapse
Affiliation(s)
- Ema Svetličić
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Luka Ozdanovac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Andrea Janeš
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | | | - Andrija Štajduhar
- Division for Medical Statistics, Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | | | - Marina Čeprnja
- Special Hospital Agram, Agram EEIG, Trnjanska cesta 108, 10000 Zagreb, Croatia
| | - Mario Cindrić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-16384422
| |
Collapse
|
7
|
Houdová D, Soto J, Castro R, Rodrigues J, Soledad Pino-González M, Petković M, Bandosz TJ, Algarra M. Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. J Colloid Interface Sci 2021; 591:373-383. [PMID: 33631525 DOI: 10.1016/j.jcis.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
A binary system composed of carbon dots (CDs) and N-doped CDs (N-CDs) embedded in an organic matrix was used for the analysis of cholesterol by MALDI (matrix-assisted laser desorption and ionization time-of-flight) mass spectrometry, as a model for detection of small, biologically relevant molecules. The results showed that both CDs are sensitive to the cholesterol and can be used either alone or in a binary system with 2,5-dihydroxybenzoic acid (DHB) to enhance the detection process. It was found that both COOH and NH2 groups on CDs surface contributed to the enhancement in the cholesterol detection by MALDI mass spectrometry in the presence of inorganic cations. Nevertheless, in the presence of NaCl, N-CDs led to a better reproducibility of results. It was due to the coexistence of positive and negative charge on N-CDs surface that led to a homogeneous analyte/substrate distribution, which is an important detection parameter. The enhancing effect of carbon dots was linked to a negative Gibbs energy of the complex formation between CDs, Na+, cholesterol and DHB, and it was supported by theoretical calculations. Moreover, upon the addition of CDs/N-CDs, such features as a low ionization potential, vertical excitation, dipole moment and oscillator strength positively affected the cholesterol detection by MALDI in the presence of Na+.
Collapse
Affiliation(s)
- Dominika Houdová
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Soto
- Department of Physical Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mª Soledad Pino-González
- Department of Organic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Marijana Petković
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Manuel Algarra
- Department of Inorganic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
8
|
Li Z, Gong C, Huo P, Deng C, Pu S. Synthesis of magnetic core–shell Fe 3O 4@PDA@Cu-MOFs composites for enrichment of microcystin-LR by MALDI-TOF MS analysis. RSC Adv 2020; 10:29061-29067. [PMID: 35521136 PMCID: PMC9055938 DOI: 10.1039/d0ra04125d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The synthetic route of the Fe3O4@PDA@Cu-MOFs microspheres and enrichment process of MC-LR.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | | | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|
9
|
Maus A, Bisha B, Fagerquist C, Basile F. Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS. J Appl Microbiol 2019; 128:697-709. [PMID: 31715076 DOI: 10.1111/jam.14507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
AIMS The identification and differentiation of antibiotic-resistant bacteria by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) profiling remains a challenge due to the difficulty in detecting unique protein biomarkers associated with this trait. To expand the detectable proteome in antibiotic-resistant bacteria, we describe a method implementing offline LC protein separation/fractionation prior to MALDI-ToF-MS and top-down MALDI-ToF/ToF-MS (tandem MS or MS/MS) for the analysis of several antibiotic-resistant Escherichia coli isolates. METHODS AND RESULTS Coupling offline LC with MALDI-ToF-MS increased the number of detected protein signals in the typically analyzed mass regions (m/z 3000-20 000) by a factor of 13. Using the developed LC-MALDI-ToF-MS protocol in conjunction with supervised principal components analysis, we detected a protein biomarker at m/z 9355 which correlated to β-lactam resistance among the E. coli bacteria tested. Implementing a top-down MALDI-ToF/ToF-MS approach, the prefractionated protein biomarker was inferred as a DNA-binding HU protein, likely translated from the blaCMY-2 gene (encoding AmpC-type β-lactamase) in the incompatibility plasmid complex A/C (IncA/C). CONCLUSIONS Our results demonstrate the utility of LC-MALDI-MS and MS/MS to extend the number of proteins detected and perform MALDI-accessible protein biomarker discovery in microorganisms. SIGNIFICANCE AND IMPACT OF THE STUDY This outcome is significant since it expands the detectable bacterial proteome via MALDI-ToF-MS.
Collapse
Affiliation(s)
- A Maus
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - B Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - C Fagerquist
- U.S. Department of Agriculture, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - F Basile
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| |
Collapse
|