1
|
Santos-López J, Gómez S, Fernández FJ, Vega MC. Protein-Protein Binding Kinetics by Biolayer Interferometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:73-88. [PMID: 38507201 DOI: 10.1007/978-3-031-52193-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The specific kinetics and thermodynamics of protein-protein interactions underlie the molecular mechanisms of cellular functions; hence the characterization of these interaction parameters is central to the quantitative understanding of physiological and pathological processes. Many methods have been developed to study protein-protein interactions, which differ in various features including the interaction detection principle, the sensitivity, whether the method operates in vivo, in vitro, or in silico, the temperature control, the use of labels, immobilization, the amount of sample required, the number of measurements that can be accomplished simultaneously, or the cost. Bio-Layer Interferometry (BLI) is a label-free biophysical method to measure the kinetics of protein-protein interactions. Label-free interaction assays are a broad family of methods that do not require protein modifications (other than immobilization) or labels such as fusions with fluorescent proteins or transactivating domains or chemical modifications like biotinylation or reaction with radionuclides. Besides BLI, other label-free techniques that are widely used for determining protein-protein interactions include surface plasmon resonance (SPR), thermophoresis, and isothermal titration calorimetry (ITC), among others.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Sara Gómez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | | | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Schmidt P, Narayan K, Li Y, Kaku CI, Brown ME, Champney E, Geoghegan JC, Vásquez M, Krauland EM, Yockachonis T, Bai S, Gunn BM, Cammarata A, Rubino CM, Ambrose P, Walker LM. Antibody-mediated protection against symptomatic COVID-19 can be achieved at low serum neutralizing titers. Sci Transl Med 2023; 15:eadg2783. [PMID: 36947596 DOI: 10.1126/scitranslmed.adg2783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.
Collapse
Affiliation(s)
| | | | - Yong Li
- Invivyd Inc., Waltham, MA 02451, USA
| | | | | | | | | | | | | | - Thomas Yockachonis
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | | | | | - Paul Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY 12305, USA
| | | |
Collapse
|
3
|
Schmidt P, Narayan K, Li Y, Kaku C, Brown M, Champney E, Geoghegan J, Vasquez M, Krauland E, Yockachonis T, Bai S, Gunn B, Cammarata A, Rubino C, Walker LM. Antibody-mediated protection against symptomatic COVID-19 can be achieved at low serum neutralizing titers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.18.22281172. [PMID: 36299436 PMCID: PMC9603828 DOI: 10.1101/2022.10.18.22281172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against COVID-19. However, the induction of multiple layers of immunity following SARS-CoV-2 exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life extended monoclonal antibody (adintrevimab) provides approximately 50% protection against symptomatic COVID-19 in SARS-CoV-2-naive adults at low serum nAb titers on the order of 1:30. Vaccine modeling supports a similar 50% protective nAb threshold, suggesting low levels of serum nAb can protect in both monoclonal and polyclonal settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for approximately 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as an alternative or supplement to vaccination in high-risk populations.
Collapse
|
4
|
Combined IgE neutralization and Bifidobacterium longum supplementation reduces the allergic response in models of food allergy. Nat Commun 2022; 13:5669. [PMID: 36167830 PMCID: PMC9515155 DOI: 10.1038/s41467-022-33176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
IgE is central to the development of allergic diseases, and its neutralization alleviates allergic symptoms. However, most of these antibodies are based on IgG1, which is associated with an increased risk of fragment crystallizable-mediated side effects. Moreover, omalizumab, an anti-IgE antibody approved for therapeutic use, has limited benefits for patients with high IgE levels. Here, we assess a fusion protein with extracellular domain of high affinity IgE receptor, FcεRIα, linked to a IgD/IgG4 hybrid Fc domain we term IgETRAP, to reduce the risk of IgG1 Fc-mediated side effects. IgETRAP shows enhanced IgE binding affinity compared to omalizumab. We also see an enhanced therapeutic effect of IgETRAP in food allergy models when combined with Bifidobacterium longum, which results in mast cell number and free IgE levels. The combination of IgETRAP and B. longum may therefore represent a potent treatment for allergic patients with high IgE levels. IgE is a critical component of the allergic response and therapeutic targeting can alleviate symptomology. Here the authors propose the combined use of Bifidobacterium longum and a FcεRIα extracellular domain linked to a IgD/IgG4 hybrid Fc domain fusion protein called IgETRAP and show reduction of mast cell and IgE levels in models of food allergy.
Collapse
|
5
|
Chouquet A, Pinto AJ, Hennicke J, Ling WL, Bally I, Schwaigerlehner L, Thielens NM, Kunert R, Reiser JB. Biophysical Characterization of the Oligomeric States of Recombinant Immunoglobulins Type-M and Their C1q-Binding Kinetics by Biolayer Interferometry. Front Bioeng Biotechnol 2022; 10:816275. [PMID: 35685087 PMCID: PMC9173649 DOI: 10.3389/fbioe.2022.816275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulins type-M (IgMs) are one of the first antibody classes mobilized during immune responses against pathogens and tumor cells. Binding to specific target antigens enables the interaction with the C1 complex which strongly activates the classical complement pathway. This biological function is the basis for the huge therapeutic potential of IgMs. But, due to their high oligomeric complexity, in vitro production, biochemical characterization, and biophysical characterization are challenging. In this study, we present recombinant production of two IgM models (IgM617 and IgM012) in pentameric and hexameric states and the evaluation of their polymer distribution using different biophysical methods (analytical ultracentrifugation, size exclusion chromatography coupled to multi-angle laser light scattering, mass photometry, and transmission electron microscopy). Each IgM construct is defined by a specific expression and purification pattern with different sample quality. Nevertheless, both purified IgMs were able to activate complement in a C1q-dependent manner. More importantly, BioLayer Interferometry (BLI) was used for characterizing the kinetics of C1q binding to recombinant IgMs. We show that recombinant IgMs possess similar C1q-binding properties as IgMs purified from human plasma.
Collapse
Affiliation(s)
- Anne Chouquet
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Andrea J Pinto
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Julia Hennicke
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wai Li Ling
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Isabelle Bally
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Linda Schwaigerlehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole M Thielens
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| |
Collapse
|
6
|
Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review. AAPS J 2021; 24:15. [PMID: 34931298 DOI: 10.1208/s12248-021-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The development of monoclonal antibody (mAb) biosimilars is a complex process. The key to their successful development and commercialization is an in-depth understanding of the key product attributes that impact safety and efficacy and the strategies to control them. Functional assessment of mAb is a crucial part of the comparability of biopharmaceutical drugs. The development of a relevant and robust functional assay requires an interdisciplinary approach and sufficient flexibility to balance regulatory concerns as well as dynamics and variability during the manufacturing process. Although many advanced tools are available to study and compare the potency and bioactivity of the protein, most of these techniques suffer from major shortcomings that limit their routine use. These include the complexity of the task, establishment of the relevance of the chosen method with the mechanism of action (MOA) of the biosimilar, cost and extended time of analysis, and often the ambiguity in interpretation of the resulting data. To overcome or to address these challenges, the use of multiple orthogonal state-of-the-art techniques is a necessary prerequisite.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumit Kumar Singh
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,School of Biochemical Engineering, IIT-BHU, Varanasi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Strategy for high-throughput identification of protein complexes by array-based multi-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1652:462351. [PMID: 34174714 DOI: 10.1016/j.chroma.2021.462351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Comprehensive elucidation of the composition of multiprotein complexes in model organisms is essential to understand conserved biological systems, but large-scale mapping physical association networks is still challenging due to limited throughput of present methods. In this work, a strategy coupling array-based online two-dimensional liquid chromatography (array-based 2D-LC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was demonstrated for high throughput and in-depth identification of protein complexes from cultured human HeLa cell extracts. Mixed-bed ion-exchange column was employed as the first dimensional (1stD) separating mode and an array consisting of eight reversed phase columns was developed as the second dimensional (2ndD) mode. Taking advantage of array parallel strategy, this online system showed an 8-fold increase in throughput. After array-based online 2D-LC separation, altogether 256 × 2ndD fractions were collected for further LC-MS/MS analysis. Public databases of protein-protein interaction (PPI) and co-elution curves identified by LC-MS were applied to reconstruct the protein complexes. A rigorous inspection was operated by cataloging the protein complexes into chromatographic fractions to minimize the number of false positives. As result, a total number of 4,436 proteins were identified and 26,092 elution curves were graphed. A network consisting of 47,745 PPIs was established among 2,201 proteins and presented 1,530 putative protein complexes with high confidence. Most of the identified PPIs were linked to diverse biological processes and may reveal further disease mechanism and therapeutic strategy.
Collapse
|
8
|
Láng JA, Balogh ZC, Nyitrai MF, Juhász C, Gilicze AKB, Iliás A, Zólyomi Z, Bodor C, Rábai E. In vitro functional characterization of biosimilar therapeutic antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:41-50. [PMID: 34895654 DOI: 10.1016/j.ddtec.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 06/14/2023]
Abstract
The key factor in successful development and marketing of biosimilar antibodies is a deep understanding of their critical quality attributes and the ability to control them. Comprehensive functional characterization is therefore at the heart of the process and is a crucial part of regulatory requirements. Establishment of a scientifically sound molecule-specific functional in vitro assay panel requires diligent planning and high flexibility in order to respond to both regulatory requirements and the ever-changing demands relevant to the different stages of the development and production process. Relevance of the chosen assays to the in vivo mechanism of action is of key importance to the stepwise evidence-based demonstration of biosimilarity. Use of a sound interdisciplinary approach and orthogonal state-of-the-art techniques is also unavoidable for gaining in-depth understanding of the biosimilar candidate. The aim of the present review is to give a snapshot on the methodic landscape as depicted by the available literature discussing the in vitro techniques used for the functional characterization of approved biosimilar therapeutic antibodies. Emerging hot topics of the field and relevant structure-function relationships are also highlighted.
Collapse
Affiliation(s)
- Júlia Anna Láng
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Zsófia Cselovszkiné Balogh
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary.
| | - Mónika Fizilné Nyitrai
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Cintia Juhász
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Anna Katalin Baráné Gilicze
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Attila Iliás
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Zsolt Zólyomi
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Csaba Bodor
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| | - Erzsébet Rábai
- Biotechnology Research & Development Division/Bioassay Development Group, Gedeon Richter Plc, Gyömrői Street 19-21 1103 Budapest Hungary
| |
Collapse
|