1
|
Yang X, Zhang J, Li Y, Hu H, Li X, Ma T, Zhang B. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117918. [PMID: 38382654 DOI: 10.1016/j.jep.2024.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.
Collapse
Affiliation(s)
- Xu Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junqi Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huiting Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Xin L, Ren M, Lou Y, Yin H, Qin F, Xiong Z. Integrated UHPLC-MS untargeted metabolomics and gut microbe metabolism pathway-targeted metabolomics to reveal the prevention mechanism of Gushudan on kidney-yang-deficiency-syndrome rats. J Pharm Biomed Anal 2024; 242:116062. [PMID: 38387127 DOI: 10.1016/j.jpba.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.
Collapse
Affiliation(s)
- Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China.
| |
Collapse
|
3
|
Zhang J, Wang N, Zheng Y, Yang B, Wang S, Wang X, Pan B, Wang Z. Naringenin in Si-Ni-San formula inhibits chronic psychological stress-induced breast cancer growth and metastasis by modulating estrogen metabolism through FXR/EST pathway. J Adv Res 2022; 47:189-207. [PMID: 35718080 PMCID: PMC10173160 DOI: 10.1016/j.jare.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Chronic psychological stress is a well-established risk factor for breast cancer development. Si-Ni-San (SNS) is a classical traditional Chinese medicine formula prescribed to psychological disorder patients. However, its action effects, molecular mechanisms, and bioactive phytochemicals against breast cancer are not yet clear. OBJECTIVES This study aimed to explore the modulatory mechanism and bioactive compound of SNS in regulating estrogen metabolism during breast cancer development induced by chronic psychological stress. METHODS Mouse breast cancer xenograft was used to determine the effect of SNS on breast cancer growth and metastasis. Metabolomics analysis was conducted to discover the impact of SNS on metabolic profile changes in vivo. Multiple molecular biology experiments and breast cancer xenografts were applied to verify the anti-metastatic potentials of the screened bioactive compound. RESULTS SNS remarkably inhibited chronic psychological stress-induced breast cancer growth and metastasis in the mouse breast cancer xenograft. Meanwhile, chronic psychological stress increased the level of cholic acid, accompanied by the elevation of estradiol. Mechanistic investigation demonstrated that cholic acid activated farnesoid X receptor (FXR) expression, which inhibited hepatocyte nuclear factor 4α (HNF4α)-mediated estrogen sulfotransferase (EST) transcription in hepatocytes, and finally resulting in estradiol elevation. Notably, SNS inhibited breast cancer growth by suppressing estradiol level via modulating FXR/EST signaling. Furthermore, luciferase-reporting gene assay screened naringenin as the most bioactive compound in SNS for triggering EST activity in hepatocytes. Interestingly, pharmacokinetic study revealed that naringenin had the highest absorption in the liver tissue. Following in vivo and in vitro studies demonstrated that naringenin inhibited stress-induced breast cancer growth and metastasis by promoting estradiol metabolism via FXR/EST signaling. CONCLUSION This study not only highlights FXR/EST signaling as a crucial target in mediating stress-induced breast cancer development, but also provides naringenin as a potential candidate for breast cancer endocrine therapy via promoting estradiol metabolism.
Collapse
Affiliation(s)
- Juping Zhang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bowen Yang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bo Pan
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
4
|
Xing YM, Li B, Liu L, Li Y, Yin SX, Yin SC, Chen J, Guo SX. Armillaria mellea Symbiosis Drives Metabolomic and Transcriptomic Changes in Polyporus umbellatus Sclerotia. Front Microbiol 2022; 12:792530. [PMID: 35185819 PMCID: PMC8851056 DOI: 10.3389/fmicb.2021.792530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Sclerotia, the medicinal part of Polyporus umbellatus, play important roles in diuresis and renal protection, with steroids and polysaccharides as the main active ingredients. The sclerotia grow and develop only after symbiosis with Armillaria sp. In this study, a systematic metabolomics based on non-targeted UPLC-MS method was carried out between the infected part of the separated cavity wall of the sclerotia (QR) and the uninfected part (the control group, CK) to find and identify differential metabolites. The biosynthetic pathway of characteristic steroids in sclerotia of P. umbellatus was deduced and the content of ergosterol, polyporusterone A and B in the QR and CK groups were detected with the High Performance Liquid Chromatography (HPLC). Furthermore, the expression patterns of putative genes associated with steroid biosynthesis pathway were also performed with quantitative real-time PCR. The results showed that a total of 258 metabolites originated from fungi with the fragmentation score more than 45 and high resolution mass were identified, based on UPLC-MS metabolomic analysis, and there were 118 differentially expressed metabolites (DEMs) between both groups. The metabolic pathways indicated that steroids, fatty acid and carbohydrate were active and enriched during P. umbellatus sclerotia infected by A. mellea. The content of ergosterol, polyporusterone A and B in the QR group increased by 32.2, 75.0, and 20.0%, in comparison to that of the control group. The qRT-PCR analysis showed that series of enzymes including C-8 sterol isomerase (ERG2), sterol C-24 methyltransferase (ERG6) and sterol 22-desaturase (ERG5), which played important roles in the final steps of ergosterol biosynthesis, all presented up-regulated patterns in the QR group in P. umbellatus. The comprehensive metabolomic and transcriptomic information will contribute to further study concerning the mechanisms of P. umbellatus sclerotial formation infected by A. mellea in the future.
Collapse
Affiliation(s)
- Yong-Mei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liu Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu-Xue Yin
- Institute of Fungus Development of Liuba, Qinzheng Zhuling Development Co., Ltd., of Liuba, Hanzhong, China
| | - Shu-Chao Yin
- Institute of Fungus Development of Liuba, Qinzheng Zhuling Development Co., Ltd., of Liuba, Hanzhong, China
| | - Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Screening of characteristic umami substances in preserved egg yolk based on the electronic tongue and UHPLC-MS/MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Liu F, Sun Z, Hu P, Tian Q, Xu Z, Li Z, Tian X, Chen M, Huang C. Determining the protective effects of Yin-Chen-Hao Tang against acute liver injury induced by carbon tetrachloride using 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 2019; 174:567-577. [PMID: 31261038 DOI: 10.1016/j.jpba.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Yin-Chen-Hao Tang (YCHT), consisting of Artemisia annua L., Gardenia jasminoides Ellis, and Rheum Palmatum L., has been used to relieve liver diseases in China for thousands of years. Several protective mechanisms of YCHT on liver injury have been investigated based on metabolomics, but the effects of YCHT on the alterations in the gut microbiota are still unclear. In this study, an integrated approach based on 16S rRNA gene sequencing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) metabolic profiling was performed to assess the effects of YCHT on liver injury induced by carbon tetrachloride (CCl4) through the regulation of the relative abundances of gut microbiota and their relationships with biomarker candidates. A total of twelve significantly altered bacterial genera and nine metabolites were identified, which returned to normal levels after YCHT treatment. The relative abundances of the identified microbiota, including significantly elevated amounts of p_Firmicutes, c_Clostridia, o_Clostridiales, f_Ruminococcaceae, g_[Eubacterium]_coprostanoligenes_group, s_uncultured_bacterium_f_Lachnospiraceae and remarkedly increased amounts of p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_Bacteroidaceae, g_Bacteroides and s_uncultured_bacterium_g_Bacteroides, were found in model rats compared with controls. Potential biomarkers, including lower levels of LysoPC (16:1(9Z)/0:0), LysoPC (20:3(5Z,8Z,11Z)), LysoPC (17:0), LysoPC (20:1(11Z)) and 3-hydroxybutyric acid and higher amounts of ornithine, L-kynurenine, hippuric acid and taurocholic acid are involved in several custom metabolic pathways, such as arginine and proline metabolism, tryptophan metabolism, glycerophospholipid metabolism and primary bile acid biosynthesis. Interestingly, there was a strong correlation between the perturbed gut microbiota in genera c_Clostridia and o_Clostridiales and the altered plasma metabolite 3-hydroxybutyric acid. This finding means that the hepatoprotective effects of YCHT may be due to the regulation of the production of the functional metabolite 3-hydroxybutyric acid through changes in the proportions of c_Clostridia and o_Clostridiales. These results showed that the hepatoprotective effects of YCHT not only focused on custom metabolic pathways but also depended on the changes in the gut microbiota in liver injury. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be applied to comprehensively evaluate the effects of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
- Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Zhaolin Sun
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Pei Hu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Qiang Tian
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Zhou Xu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Zhixiong Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Xiaoting Tian
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Mingcang Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China.
| | - Chenggang Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Science, Shanghai, 201203, PR China.
| |
Collapse
|