1
|
Ma X, Wang Q, Cai L, Xiao M. Evaluation of deep eutectic solvents chiral selectors based on lactobionic acid in capillary electrophoresis. Anal Bioanal Chem 2024; 416:1417-1425. [PMID: 38240794 DOI: 10.1007/s00216-024-05138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 07/13/2024]
Abstract
Recently, deep eutectic solvents (DESs) have attracted considerable interest in analytical chemistry. This work described the enantioseparations of twenty amino alcohol drugs with several DESs based on lactobionic acid (LA) as the sole chiral selector in capillary electrophoresis (CE) firstly. Compared to the single LA system and the ionic liquid/LA synergistic system, the DES system exhibited considerably improved separations. The influences of some key parameters on separations were investigated in detail. This work also experimentally demonstrated that the carboxyl group was indispensable in the process of chiral recognition. The mechanisms of the improvements of DESs on enantioseparations were studied via ultraviolet spectroscopy. Furthermore, the proposed method was used to determine the enantiomeric purity of propranolol hydrochloride successfully. This is the first time that chiral DESs were utilized as the sole chiral selectors in CE, and this strategy has opened up a new prospect for the use of DESs in enantioseparation.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
2
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
3
|
Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Ma X, Zhang C, Cai L. Functional ionic liquids as chiral selector for visual chiral sensing and enantioselective precipitate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Gumus E, Bingol H, Zor E. Nanomaterials-enriched sensors for detection of chiral pharmaceuticals. J Pharm Biomed Anal 2022; 221:115031. [PMID: 36115205 DOI: 10.1016/j.jpba.2022.115031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Advancements in nanoscience and nanotechnology have opened new pathways to fabricate novel nanostructures with interesting properties that would be used for different applications. In this respect, nanostructures comprising chirality are one of the most rapidly developing research fields encompassing chemistry, physics and biology. Chirality, also known as mirror asymmetry, describes the geometrical property of an object that is not superimposable on its mirror image. This characteristic plays a crucial role because these identical forms of chiral species in pharmaceuticals or food additives may exhibit different effects on living organisms. Therefore, chiral analysis is an important field of modern chemical analysis in health-related industries that are reliant on the production of enantiomeric compounds involving pharmaceuticals. This review covers the recent advances dealing with the synthesis, design and advantageous analytical performance of nanomaterials-enriched sensors used for chiral pharmaceuticals. We conclude this review with the challenges existing in this research field and our perspectives on some potential strategies with cutting-edge approaches for the rational design of sensors for chiral pharmaceuticals. We expect this comprehensive review will inspire future studies in nanomaterials-enriched chiral sensors.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
6
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chiral Selectors in Voltammetric Sensors Based on Mixed Phenylalanine/Alanine Cu(II) and Zn(II) Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10080117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A practical application composite based on mixed chelate complexes [M(S-Ala)2(H2O)n]–[M(S-Phe)2(H2O)n] (M = Cu(II), Zn(II); n = 0–1) as chiral selectors in enantioselective voltammetric sensors was suggested. The structures of the resulting complexes were studied by XRD, ESI-MS, and IR- and NMR-spectroscopy methods. It was determined that enantioselectivity depends on the metal nature and on the structure of the mixed complex. The mixed complexes, which were suggested to be chiral selectors, were stable under the experimental conditions and provided greater enantioselectivity in the determination of chiral analytes, such as naproxen and propranolol, in comparison with the amino acids they comprise. The best results shown by the mixed copper complex [Cu(S-Ala)2]–[Cu(S-Phe)2] were: ipS/ipR = 1.27 and ΔEp = 30 mV for Nap; and ipS/ipR = 1.37 and ΔEp = 20 mV for Prp. The electrochemical and analytical characteristics of the sensors and conditions of voltammogram recordings were studied by differential pulse voltammetry. Linear relationships between the anodic current and the concentrations of Nap and Prp enantiomers were achieved in the range of 2.5 × 10−5 to 1.0 × 10−3 mol L−1 for GCE/PEC-[Cu(S-Ala)2]–[Cu(S-Phe)2] and 5.0 × 10−5 to 1.0 × 10−3 for GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)], with detection limits (3 s/m) of 0.30–1.24 μM. The suggested sensor was used to analyze Nap and Prp enantiomers in urine and plasma samples.
Collapse
|
8
|
Wei J, Liu C, Wu T, Zeng W, Hu B, Zhou S, Wu L. A review of current status of ratiometric molecularly imprinted electrochemical sensors: From design to applications. Anal Chim Acta 2022; 1230:340273. [DOI: 10.1016/j.aca.2022.340273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
|
9
|
Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. NANOMATERIALS 2022; 12:nano12111913. [PMID: 35683768 PMCID: PMC9182195 DOI: 10.3390/nano12111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymer (MIP) is illustrated as an analogue of a natural biological antibody-antigen system. MIP is an appropriate substrate for electrochemical sensors owing to its binding sites, which match the functional groups and spatial structure of the target analytes. However, the irregular shapes and slow electron transfer rate of MIP limit the sensitivity and conductivity of electrochemical sensors. Nanomaterials, famous for their prominent electron transfer capacity and specific surface area, are increasingly employed in modifications of MIP sensors. Staying ahead of traditional electrochemical sensors, nanomaterials-based MIP sensors represent excellent sensing and recognition capability. This review intends to illustrate their advances over the past five years. Current limitations and development prospects are also discussed.
Collapse
|
10
|
Zhou S, Liu C, Lin J, Zhu Z, Hu B, Wu L. Towards Development of Molecularly Imprinted Electrochemical Sensors for Food and Drug Safety: Progress and Trends. BIOSENSORS 2022; 12:bios12060369. [PMID: 35735516 PMCID: PMC9221454 DOI: 10.3390/bios12060369] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 05/31/2023]
Abstract
Due to their advantages of good flexibility, low cost, simple operations, and small equipment size, electrochemical sensors have been commonly employed in food safety. However, when they are applied to detect various food or drug samples, their stability and specificity can be greatly influenced by the complex matrix. By combining electrochemical sensors with molecular imprinting techniques (MIT), they will be endowed with new functions of specific recognition and separation, which make them powerful tools in analytical fields. MIT-based electrochemical sensors (MIECs) require preparing or modifying molecularly imprinted polymers (MIPs) on the electrode surface. In this review, we explored different MIECs regarding the design, working principle and functions. Additionally, the applications of MIECs in food and drug safety were discussed, as well as the challenges and prospects for developing new electrochemical methods. The strengths and weaknesses of MIECs including low stability and electrode fouling are discussed to indicate the research direction for future electrochemical sensors.
Collapse
Affiliation(s)
- Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Chen Liu
- Leibniz-Institute of Photonic Technology, Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany;
| | - Jianguo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Zhi Zhu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China;
| | - Long Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| |
Collapse
|
11
|
Lei M, Wang X, Zhang T, Shi Y, Wen J, Zhang Q. Homochiral Eu 3+@MOF Composite for the Enantioselective Detection and Separation of ( R/ S)-Ornidazole. Inorg Chem 2022; 61:6764-6772. [PMID: 35481747 DOI: 10.1021/acs.inorgchem.1c03695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of homochiral materials for the enantioselective detection and separation of chiral drugs is in high demand for the pharmaceutical industry. Herein, an anionic homochiral metal-organic framework (HMOF) with in situ generated [Me2NH2]+ counterions, {[Me2NH2]2[Zn2(d-L)2(HCO2)(OH)]·5H2O}n (HMOF-1), was synthesized using a d-camphorate-derived enantiopure dicarboxylate ligand, 4,4'-[[(1R,3S)-1,2,2-trimethylcyclopentane-1,3-dicarbonyl]bis(azanediyl)]dibenzoic acid (d-H2L) via a simple solvothermal method. Interestingly, HMOF-1 could be used as a parent framework to encapsulate Eu3+ cations via an ion-exchange process, yielding an Eu3+@HMOF-1 composite with dual-luminescent centers. The obtained Eu3+@HMOF-1 has high chemical stability and good luminescence stability in water. Importantly, Eu3+@HMOF-1 exhibits enhanced enantioselectivity and sensitivity in the detection of an important chiral nitroimidazole antibiotic, (R/S)-ornidazole (ONZ) in comparison to HMOF-1 under the same aqueous conditions. The enantiomeric excess (ee) value of the ONZ enantiomers can be accurately determined by the ratio of dual emission from the ligand and Eu3+. In addition, Eu3+@HMOF-1 shows the enantioselective separation of racemic ONZ enantiomers with an ee value of 86.6%. This work provides a simple strategy for the preparation of LnIII-incorporated HMOF composite materials for the simultaneous enantioselective detection and separation of chiral drugs.
Collapse
Affiliation(s)
- Mingyuan Lei
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiaohe Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tianjun Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Shi
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinghong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
12
|
Rong S, Zou L, Meng L, Yang X, Dai J, Wu M, Qiu R, Tian Y, Feng X, Ren X, Jia L, Jiang L, Hang Y, Ma H, Pan H. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Anal Chim Acta 2022; 1196:339545. [DOI: 10.1016/j.aca.2022.339545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
13
|
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
15
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2020; 224:121794. [PMID: 33379023 DOI: 10.1016/j.talanta.2020.121794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Since chiral recognition mechanism based on molecularly imprinted polymers immerged, it has assisted countless chemical and electrochemical analytical sample preparation techniques. It has done this by enhancing the enatioseparation abilities of these techniques. The preparation and optimization of chiral molecularly imprinted polymers (CMIPs) are two favored methods in the separation and sensor fields. This review aims to present an overview of advances in the preparation and application of CMIPs in analytical approaches in different available formats (eg. column, monolithic column, cartridge, membrane, nanomaterials, pipette tip and stir bar sorptive) over the last decade. In addition, progress in the preparation and development of CMIPs-based sensor fields have been also discussed. Finally, the main application challenges of CMIPs are also summarily explained, as well as upcoming prospects in the field.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, Akademiska stråket 1, S-171 64, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Akademiska stråket 1, S-171 77, Stockholm, Sweden.
| |
Collapse
|
17
|
Applications of Chitosan in Molecularly and Ion Imprinted Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00177-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Grecchi S, Arnaboldi S, Korb M, Cirilli R, Araneo S, Guglielmi V, Tomboni G, Magni M, Benincori T, Lang H, Mussini PR. Widening the Scope of “Inherently Chiral” Electrodes: Enantiodiscrimination of Chiral Electroactive Probes with Planar Stereogenicity. ChemElectroChem 2020. [DOI: 10.1002/celc.202000657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sara Grecchi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Serena Arnaboldi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Marcus Korb
- The University of Western AustraliaFaculty of Sciences, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei FarmaciIstituto Superiore di Sanità Viale Regina Elena 299 00161 Roma Italy
| | - Silvia Araneo
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Vittoria Guglielmi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Giorgio Tomboni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Mirko Magni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Heinrich Lang
- Technische Universität ChemnitzFaculty of Natural SciencesInstitute of Chemistry, Inorganic Chemistry Straße der Nationen 62 D-09107 Chemnitz Germany
| | - Patrizia R. Mussini
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| |
Collapse
|
19
|
Stoian I–A, Iacob BC, Prates Ramalho JP, Marian IO, Chiș V, Bodoki E, Oprean R. A chiral electrochemical system based on l-cysteine modified gold nanoparticles for propranolol enantiodiscrimination: Electroanalysis and computational modelling. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Huang Y, Pan J, Liu Y, Wang M, Deng S, Xia Z. A SPE Method with Two MIPs in Two Steps for Improving the Selectivity of MIPs. Anal Chem 2019; 91:8436-8442. [DOI: 10.1021/acs.analchem.9b01453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yike Huang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingmiao Pan
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Yi Liu
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Min Wang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Suya Deng
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
21
|
Ma X, Kan Z, Du Y, Yang J, Feng Z, Zhu X, Chen C. Enantioseparation of amino alcohol drugs by nonaqueous capillary electrophoresis with a maltobionic acid-based ionic liquid as the chiral selector. Analyst 2019; 144:7468-7477. [DOI: 10.1039/c9an01162e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study deals with the nonaqueous capillary electrophoretic enantioseparation of twenty-two amino alcohol drugs with a maltobionic acid (MA)-based ionic liquid (tetramethylammonium maltobionic acid, TMA-MA) as the novel chiral selector.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Zigui Kan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- State Key Laboratory of Natural Medicines
| |
Collapse
|