1
|
Ramírez W, Pillajo V, Ramírez E, Manzano I, Meza D. Exploring Components, Sensors, and Techniques for Cancer Detection via eNose Technology: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:7868. [PMID: 39686404 DOI: 10.3390/s24237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This paper offers a systematic review of advancements in electronic nose technologies for early cancer detection with a particular focus on the detection and analysis of volatile organic compounds present in biomarkers such as breath, urine, saliva, and blood. Our objective is to comprehensively explore how these biomarkers can serve as early indicators of various cancers, enhancing diagnostic precision and reducing invasiveness. A total of 120 studies published between 2018 and 2023 were examined through systematic mapping and literature review methodologies, employing the PICOS (Population, Intervention, Comparison, Outcome, and Study design) methodology to guide the analysis. Of these studies, 65.83% were ranked in Q1 journals, illustrating the scientific rigor of the included research. Our review synthesizes both technical and clinical perspectives, evaluating sensor-based devices such as gas chromatography-mass spectrometry and selected ion flow tube-mass spectrometry with reported incidences of 30 and 8 studies, respectively. Key analytical techniques including Support Vector Machine, Principal Component Analysis, and Artificial Neural Networks were identified as the most prevalent, appearing in 22, 24, and 13 studies, respectively. While substantial improvements in detection accuracy and sensitivity are noted, significant challenges persist in sensor optimization, data integration, and adaptation into clinical settings. This comprehensive analysis bridges existing research gaps and lays a foundation for the development of non-invasive diagnostic devices. By refining detection technologies and advancing clinical applications, this work has the potential to transform cancer diagnostics, offering higher precision and reduced reliance on invasive procedures. Our aim is to provide a robust knowledge base for researchers at all experience levels, presenting insights on sensor capabilities, metrics, analytical methodologies, and the transformative impact of emerging electronic nose technologies in clinical practice.
Collapse
Affiliation(s)
- Washington Ramírez
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Verónica Pillajo
- Departamento de Informática, Universidad Politécnica Salesiana, Quito 170146, Ecuador
| | - Eileen Ramírez
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Ibeth Manzano
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Doris Meza
- Facultad de Ciencias Económicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| |
Collapse
|
2
|
Gouzerh F, Dormont L, Buatois B, Hervé MR, Mancini M, Maraver A, Thomas F, Ganem G. Partial role of volatile organic compounds in behavioural responses of mice to bedding from cancer-affected congeners. Biol Open 2024; 13:bio060324. [PMID: 39351636 PMCID: PMC11552615 DOI: 10.1242/bio.060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 11/13/2024] Open
Abstract
Tumours induce changes in body odours. We compared volatile organic compounds (VOCs) in soiled bedding of a lung adenocarcinoma male mouse model in which cancer had (CC) versus had not (NC) been induced by doxycycline at three conditions: before (T0), after 2 weeks (T2; early tumour development), after 12 weeks (T12; late tumour development) of the induction. In an earlier study, wild-derived mice behaviourally discriminated between CC and NC soiled bedding at T2 and T12. Here, we sought to identify VOCs present in the same soiled bedding that could have triggered the behavioural discrimination. Solid phase micro-extraction was performed to extract VOCs from 3 g-sample stimuli. While wild-derived mice could discriminate the odour of cancerous mice at a very early stage of tumour development (T2), the present study did not identify VOCs that could explain this behaviour. However, consistent with the earlier behavioural study, four VOCs, including two well-known male mouse sex pheromones, were found to be present in significantly different proportions in soiled bedding of CC as compared to NC at T12. We discuss the potential involvement of non-volatile molecules such as proteins and peptides in behavioural discrimination of early tumour development (T2), and point-out VOCs that could help diagnose cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Laurent Dormont
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Bruno Buatois
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Maxime R. Hervé
- IGEPP, Institut de génétique, environnement et protection des plantes, INRAE, Institut Agro, University of Rennes, Rennes, France
| | - Maicol Mancini
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Antonio Maraver
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| | - Guila Ganem
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
3
|
Dalis C, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Markel TA. Volatile Organic Compound Assessment as a Screening Tool for Early Detection of Gastrointestinal Diseases. Microorganisms 2023; 11:1822. [PMID: 37512994 PMCID: PMC10385474 DOI: 10.3390/microorganisms11071822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal (GI) diseases have a high prevalence throughout the United States. Screening and diagnostic modalities are often expensive and invasive, and therefore, people do not utilize them effectively. Lack of proper screening and diagnostic assessment may lead to delays in diagnosis, more advanced disease at the time of diagnosis, and higher morbidity and mortality rates. Research on the intestinal microbiome has demonstrated that dysbiosis, or unfavorable alteration of organismal composition, precedes the onset of clinical symptoms for various GI diseases. GI disease diagnostic research has led to a shift towards non-invasive methods for GI screening, including chemical-detection tests that measure changes in volatile organic compounds (VOCs), which are the byproducts of bacterial metabolism that result in the distinct smell of stool. Many of these tools are expensive, immobile benchtop instruments that require highly trained individuals to interpret the results. These attributes make them difficult to implement in clinical settings. Alternatively, electronic noses (E-noses) are relatively cheaper, handheld devices that utilize multi-sensor arrays and pattern recognition technology to analyze VOCs. The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the literature surrounding several intestinal diseases in which headspace VOCs can be used to detect or predict disease.
Collapse
Affiliation(s)
- Costa Dalis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Krishnamoorthy A, Chandrapalan S, Bosch S, Bannaga A, De Boer NK, De Meij TG, Leja M, Hanna GB, De Vietro N, Altomare D, Arasaradnam RP. The Influence of Mechanical Bowel Preparation on Volatile Organic Compounds for the Detection of Gastrointestinal Disease-A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031377. [PMID: 36772415 PMCID: PMC9919600 DOI: 10.3390/s23031377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/25/2023]
Abstract
(1) Background: Colorectal cancer is the second commonest cause of cancer deaths worldwide; recently, volatile organic compounds (VOCs) have been proposed as potential biomarkers of this disease. In this paper, we aim to identify and review the available literature on the influence of mechanical bowel preparation on VOC production and measurement. (2) Methods: A systematic search for studies was carried out for articles relevant to mechanical bowel preparation and its effects on volatile organic compounds. A total of 4 of 1349 papers initially derived from the search were selected. (3) Results: Two studies with a total of 134 patients found no difference in measured breath VOC profiles after bowel preparation; one other study found an increase in breath acetone in 61 patients after bowel preparation, but no other compounds were affected. Finally, the last study showed the alteration of urinary VOC profiles. (4) Conclusions: There is limited data on the effect of bowel preparation on VOC production in the body. As further studies of VOCs are conducted in patients with symptoms of gastrointestinal disease, the quantification of the effect of bowel preparation on their abundance is required.
Collapse
Affiliation(s)
- Ashwin Krishnamoorthy
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Subashini Chandrapalan
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Ayman Bannaga
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Nanne K.H. De Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Tim G.J. De Meij
- Department of Pediatric Gastroenterology, Emma’s Children Hospital, Amsterdam UMC, 1105 Amsterdam, The Netherlands
| | - Marcis Leja
- Institute of Clinical and Preventative Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | | | - Donato Altomare
- Department of Surgery, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| |
Collapse
|
5
|
Oxner M, Trang A, Mehta J, Forsyth C, Swanson B, Keshavarzian A, Bhushan A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME FRONTIERS 2023; 4:0002. [PMID: 37849665 PMCID: PMC10521665 DOI: 10.34133/bmef.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 10/19/2023] Open
Abstract
A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.
Collapse
Affiliation(s)
- Micah Oxner
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jhalak Mehta
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Barbara Swanson
- Department of Adult Health and Gerontological Nursing, Rush University College of Nursing, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Section of Gastroenterology, Rush Medical College, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
6
|
Systematic Review: Contribution of the Gut Microbiome to the Volatile Metabolic Fingerprint of Colorectal Neoplasia. Metabolites 2022; 13:metabo13010055. [PMID: 36676980 PMCID: PMC9865897 DOI: 10.3390/metabo13010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) has been associated with changes in volatile metabolic profiles in several human biological matrices. This enables its non-invasive detection, but the origin of these volatile organic compounds (VOCs) and their relation to the gut microbiome are not yet fully understood. This systematic review provides an overview of the current understanding of this topic. A systematic search using PubMed, Embase, Medline, Cochrane Library, and the Web of Science according to PRISMA guidelines resulted in seventy-one included studies. In addition, a systematic search was conducted that identified five systematic reviews from which CRC-associated gut microbiota data were extracted. The included studies analyzed VOCs in feces, urine, breath, blood, tissue, and saliva. Eight studies performed microbiota analysis in addition to VOC analysis. The most frequently reported dysregulations over all matrices included short-chain fatty acids, amino acids, proteolytic fermentation products, and products related to the tricarboxylic acid cycle and Warburg metabolism. Many of these dysregulations could be related to the shifts in CRC-associated microbiota, and thus the gut microbiota presumably contributes to the metabolic fingerprint of VOC in CRC. Future research involving VOCs analysis should include simultaneous gut microbiota analysis.
Collapse
|
7
|
Astolfi M, Rispoli G, Benedusi M, Zonta G, Landini N, Valacchi G, Malagù C. Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. NANOMATERIALS 2022; 12:nano12071111. [PMID: 35407231 PMCID: PMC9000844 DOI: 10.3390/nano12071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022]
Abstract
The detection of volatile organic compounds (VOCs) exhaled by human body fluids is a recent and promising method to reveal tumor formations. In this feasibility study, a patented device, based on nanostructured chemoresistive gas sensors, was employed to explore the gaseous exhalations of tumoral, immortalized, and healthy cell lines, with the aim of distinguishing their VOC patterns. The analysis of the device output to the cell VOCs, emanated at different incubation times and initial plating concentrations, was performed to evaluate the device suitability to identify the cell types and to monitor their growth. The sensors ST25 (based on tin and titanium oxides), STN (based on tin, titanium, and niobium oxides), and TiTaV (based on titanium, tantalum and vanadium oxides) used here, gave progressively increasing responses upon the cell density increase and incubation time; the sensor W11 (based on tungsten oxide) gave instead unreliable responses to all cell lines. All sensors (except for W11) gave large and consistent responses to RKO and HEK293 cells, while they were less responsive to CHO, A549, and CACO-2 ones. The encouraging results presented here, although preliminary, foresee the development of sensor arrays capable of identifying tumor presence and its type.
Collapse
Affiliation(s)
- Michele Astolfi
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
- Correspondence: (M.A.); (G.R.)
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: (M.A.); (G.R.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Giulia Zonta
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| | - Nicolò Landini
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy;
- Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Cesare Malagù
- Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy; (G.Z.); (N.L.); (C.M.)
- SCENT S.r.l., Via Quadrifoglio 11, 44124 Ferrara, Italy
| |
Collapse
|
8
|
Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Non-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2021; 21:5440. [PMID: 34450881 PMCID: PMC8398649 DOI: 10.3390/s21165440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The ability to analyse samples in real time, at a low cost, applying easy-to-use and portable equipment, gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry (GC-MS). For diseases such as cancer with a high mortality, a technology that can provide fast results for use in routine clinical applications is important. Colorectal cancer (CRC) is among the highest occurring cancers and has high mortality rates, if diagnosed late. In our study, we investigated the use of portable electronic nose (PEN3), with further analysis using GC-TOF-MS, for the analysis of gases and volatile organic compounds (VOCs) to profile the urinary metabolome of colorectal cancer. We also compared the different cancer stages with non-cancers using the PEN3 and GC-TOF-MS. Results obtained from PEN3, and GC-TOF-MS demonstrated high accuracy for the separation of CRC and non-cancer. PEN3 separated CRC from non-cancerous group with 0.81 AUC (Area Under the Curve). We used data from GC-TOF-MS to obtain a VOC profile for CRC, which identified 23 potential biomarker VOCs for CRC. Thus, the PEN3 and GC-TOF-MS were found to successfully separate the cancer group from the non-cancer group.
Collapse
Affiliation(s)
- Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Ayman S. Bannaga
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- School of Health Sciences, Coventry University, Coventry CV1 5FB, UK
- Leicester Cancer Centre, University of Leicester, Leicester LE1 7RH, UK
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| |
Collapse
|
9
|
Hintzen KFH, Grote J, Wintjens AGWE, Lubbers T, Eussen MMM, van Schooten FJ, Bouvy ND, Peeters A. Breath analysis for the detection of digestive tract malignancies: systematic review. BJS Open 2021; 5:6226007. [PMID: 33855362 PMCID: PMC8047095 DOI: 10.1093/bjsopen/zrab013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background In recent decades there has been growing interest in the use of volatile organic compounds (VOCs) in exhaled breath as biomarkers for the diagnosis of multiple variants of cancer. This review aimed to evaluate the diagnostic accuracy and current status of VOC analysis in exhaled breath for the detection of cancer in the digestive tract. Methods PubMed and the Cochrane Library database were searched for VOC analysis studies, in which exhaled air was used to detect gastro-oesophageal, liver, pancreatic, and intestinal cancer in humans, Quality assessment was performed using the QUADAS-2 criteria. Data on diagnostic performance, VOCs with discriminative power, and methodological information were extracted from the included articles. Results Twenty-three articles were included (gastro-oesophageal cancer n = 14, liver cancer n = 1, pancreatic cancer n = 2, colorectal cancer n = 6). Methodological issues included different modalities of patient preparation and sampling and platform used. The sensitivity and specificity of VOC analysis ranged from 66.7 to 100 per cent and from 48.1 to 97.9 per cent respectively. Owing to heterogeneity of the studies, no pooling of the results could be performed. Of the VOCs found, 32 were identified in more than one study. Nineteen were reported as cancer type-specific, whereas 13 were found in different cancer types. Overall, decanal, nonanal, and acetone were the most frequently identified. Conclusion The literature on VOC analysis has documented a lack of standardization in study designs. Heterogeneity between the studies and insufficient validation of the results make interpretation of the outcomes challenging. To reach clinical applicability, future studies on breath analysis should provide an accurate description of the methodology and validate their findings.
Collapse
Affiliation(s)
- K F H Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - J Grote
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A G W E Wintjens
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - T Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M M M Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - N D Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
10
|
Deev V, Solovieva S, Andreev E, Protoshchak V, Karpushchenko E, Sleptsov A, Kartsova L, Bessonova E, Legin A, Kirsanov D. Prostate cancer screening using chemometric processing of GC-MS profiles obtained in the headspace above urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122298. [PMID: 32771969 DOI: 10.1016/j.jchromb.2020.122298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The development of screening methods for various types of cancer is of utmost importance as the early diagnostics of these diseases significantly increases the chances for patient's successful medical treatment and recovery. In this study we have developed the procedure for chromatographic profiling of urine samples based on solid-phase microextraction and GC-MS. 50 urine samples (20 from the patients with biopsy conformed prostate cancer and 30 from control group) were studied in the optimized experimental conditions. Application of chemometric classification algorithms such as k-nearest neighbors and partial least squares-discriminant analysis allowed construction of predictive models yielding very high sensitivity, specificity and accuracy values all close to 100%. This gives a good promise for further validation of this approach with a broader sample sets.
Collapse
Affiliation(s)
- Vladislav Deev
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Svetlana Solovieva
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Evgeny Andreev
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Vladimir Protoshchak
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Evgeny Karpushchenko
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Aleksander Sleptsov
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Liudmila Kartsova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Elena Bessonova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Andrey Legin
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Dmitry Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia.
| |
Collapse
|