1
|
Raveendran J, Gangadharan D, Bayry J, Rasheed PA. Emerging trends in the cystatin C sensing technologies: towards better chronic kidney disease management. RSC Adv 2025; 15:4926-4944. [PMID: 39957820 PMCID: PMC11826153 DOI: 10.1039/d4ra07197b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
Cystatin C (CysC), a protein, has replaced creatinine as a biomarker of kidney function and other diseases and has led to a surge in the research on the development of efficient CysC biosensors. The current CysC sensing technologies are remarkable in terms of selectivity and reproducibility. However, the complexity, cost, and space requirements of these methods render them unsuitable for real-time monitoring or point-of-care (PoC) implementations in healthcare settings. This review discusses the most recent developments in the field of CysC biosensing and to the best of our knowledge, this is the first focused review exclusively on CysC biosensing modalities. Our goal is to provide a thorough overview of the current state of CysC biosensors, and presenting mechanisms related to biosensor recognition and transduction. The review starts with clinical significance of CysC detection followed by detailed analysis of different CysC biosensing methods with emphasis on the necessity of PoC monitoring of CysC. We have also highlighted current challenges and an outlook on future perspectives. We anticipate that this study will play a key role in the understanding the working principle of CysC sensors and will aid in the designing of new efficient sensing modalities for the detection of CysC.
Collapse
Affiliation(s)
- Jeethu Raveendran
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678623 India
| | - Dhanya Gangadharan
- Department of Biotechnology, Sahrdaya College of Engineering and Technology Thrissur 684002 Kerala India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678623 India
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678623 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678623 India
| |
Collapse
|
2
|
Shafiei N, Mahmoodzadeh Hosseini H, Amani J, Mirhosseini SA, Jafary H. Screening and identification of DNA nucleic acid aptamers against F1 protein of Yersinia pestis using SELEX method. Mol Biol Rep 2024; 51:722. [PMID: 38829419 DOI: 10.1007/s11033-024-09561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Yersinia pestis is a bacterium that causes the disease plague. It has caused the deaths of many people throughout history. The bacterium possesses several virulence factors (pPla, pFra, and PYV). PFra plasmid encodes fraction 1 (F1) capsular antigen. F1 protein protects the bacterium against host immune cells through phagocytosis process. This protein is specific for Y. pestis. Many diagnostic techniques are based on molecular and serological detection and quantification of F1 protein in different food and clinical samples. Aptamers are small nucleic acid sequences that can act as specific ligands for many targets.This study, aimed to isolate the high-affinity ssDNA aptamers against F1 protein. METHODS AND RESULTS In this study, SELEX was used as the main strategy in screening aptamers. Moreover, enzyme-linked aptamer sorbent assay (ELASA) and surface plasmon resonance (SPR) were used to determine the affinity and specificity of obtained aptamers to F1 protein. The analysis showed that among the obtained aptamers, the three aptamers of Yer 21, Yer 24, and Yer 25 were selected with a KD value of 1.344E - 7, 2.004E - 8, and 1.68E - 8 M, respectively. The limit of detection (LoD) was found to be 0.05, 0.076, and 0.033 μg/ml for Yer 21, Yer 24, and Yer 25, respectively. CONCLUSION This study demonstrated that the synthesized aptamers could serve as effective tools for detecting and analyzing the F1 protein, indicating their potential value in future diagnostic applications.
Collapse
Affiliation(s)
- Nafiseh Shafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Ma N, Sun M, Shi H, Xue L, Zhang M, Yang W, Dang Y, Qiao Z. A Colorimetric/Fluorescent Dual-Mode Aptasensor for Salmonella Based on the Magnetic Separation of Aptamers and a DNA-Nanotriangle Programmed Multivalent Aptamer. Foods 2023; 12:3853. [PMID: 37893744 PMCID: PMC10606715 DOI: 10.3390/foods12203853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens.
Collapse
Affiliation(s)
- Na Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Mengni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hanxing Shi
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Liangliang Xue
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Min Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Shafiei N, Mahmoodzadeh Hosseini H, Amani J, Mirhosseini SA, Jafary H. Screening and Identification of DNA Nanostructure Aptamer Using the SELEX Method for Detection of Epsilon Toxin. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140505. [PMID: 38444705 PMCID: PMC10912870 DOI: 10.5812/ijpr-140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 03/07/2024]
Abstract
Background Epsilon toxin (ETX), produced by Clostridium perfringens, is one of the most potent toxins known, with a lethal potency approaching that of botulinum neurotoxins. Epsilon toxin is responsible for enteritis. Therefore, the development of rapid and simple methods to detect ETX is imperative. Aptamers are single-stranded oligonucleotides that can bind tightly to specific target molecules with an affinity comparable to that of monoclonal antibodies (mAbs). DNA aptamers can serve as tools for the molecular identification of organisms, such as pathogen subspecies. Objectives This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers against ETX. Methods This study identified aptamers using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, enzyme-linked apta-sorbent assay (ELASA), and surface plasmon resonance (SPR) to determine the affinity and specificity of the newly obtained aptamers targeting ETX. Results Several aptamers obtained through the SELEX process were studied. Among them, 2 aptamers, ETX clone 3 (ETX3; dissociation constant (Kd = 8.4 ± 2.4E-9M) and ETX11 (Kd = 6.3 ± 1.3E-9M) had favorable specificity for ETX. The limits of detection were 0.21 and 0.08 μg/mL for ETX3 and ETX11, respectively.. Conclusions The discovered aptamers can be used in various aptamer-based rapid diagnostic tests for the detection of ETX.
Collapse
Affiliation(s)
- Nafiseh Shafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Li D, Zhao L, Qian J, Liu H, You J, Cheng Z, Yu F. SERS based Y-shaped aptasensor for early diagnosis of acute kidney injury. RSC Adv 2022; 12:15910-15917. [PMID: 35733690 PMCID: PMC9135001 DOI: 10.1039/d2ra02813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering the pivotal role of biomarkers in plasma, the development of biomarker specific sensing platforms is of great significance to achieve accurate diagnosis and monitor the occurrence and progress in acute kidney injury (AKI). In this paper, we develop a promising surface-enhanced Raman scattering-based aptasensor for duplex detection of two protein biomarkers in AKI. Exploiting the base-pairing specificity of nucleic acids to form a Y-shaped self-assembled aptasensor, the MGITC labelled gold nanoparticles will be attached to the surface of magnetic beads. In the presence of specific AKI-related biomarkers, the gold nanoparticles will detach from magnetic beads into the supernatant, thus leading to a SERS signal increase, which can be used for the highly sensitive analysis of target biomarkers. In addition, the limit of detection calculated for each biomarker indicates that the SERS-based aptasensor can well meet the detection requirements in clinical applications. Finally, the generality of this sensor in the early diagnosis of AKI is confirmed by using a rat model and spiked plasma samples. This sensing platform provides a facile and general route for sensitive SERS detection of AKI-related biomarkers, which offers great promising utility for in vitro and accurate practical bioassay in AKI early diagnosis.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 PR China
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
| | - Linlu Zhao
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Jin Qian
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Heng Liu
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 PR China
| | - Ziyi Cheng
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| | - Fabiao Yu
- Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University Haikou 571199 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University Haikou 571199 China
| |
Collapse
|
6
|
Nucleic Acid Nanotechnology for Diagnostics and Therapeutics in Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23063093. [PMID: 35328515 PMCID: PMC8953740 DOI: 10.3390/ijms23063093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Acute kidney injury (AKI) has impacted a heavy burden on global healthcare system with a high morbidity and mortality in both hospitalized and critically ill patients. However, there are still some shortcomings in clinical approaches for the disease to date, appealing for an earlier recognition and specific intervention to improve long-term outcomes. In the past decades, owing to the predictable base-pairing rule and highly modifiable characteristics, nucleic acids have already become significant biomaterials for nanostructure and nanodevice fabrication, which is known as nucleic acid nanotechnology. In particular, its excellent programmability and biocompatibility have further promoted its intersection with medical challenges. Lately, there have been an influx of research connecting nucleic acid nanotechnology with the clinical needs for renal diseases, especially AKI. In this review, we begin with the diagnostics of AKI based on nucleic acid nanotechnology with a highlight on aptamer- and probe-functionalized detection. Then, recently developed nanoscale nucleic acid therapeutics towards AKI will be fully elucidated. Furthermore, the strengths and limitations will be summarized, envisioning a wiser and wider application of nucleic acid nanotechnology in the future of AKI.
Collapse
|
7
|
Guo Y, Shi M, Liu X, Liang H, Gao L, Liu Z, Li J, Yu D, Li K. Selection and preliminary application of DNA aptamer targeting A549 excreta in cell culture media. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Fan H, Liu Y, Dong J, Luo Z. Screening Aptamers that Are Specific for Beclomethasone and the Development of Quantum Dot-Based Assay. Appl Biochem Biotechnol 2021; 193:3139-3150. [PMID: 34085169 DOI: 10.1007/s12010-021-03585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
We developed an aptamer that was specific for beclomethasone (BEC) via systematic evolution of ligands by exponential enrichment (SELEX). Development was monitored by real-time quantitative PCR (Q-PCR) and the enriched library was sequenced by high-throughput sequencing. Forty-seven aptamer candidates were obtained; of these, BEC-6 showed the highest affinity (Kd = 0.15 ± 0.02 μM) and did not cross-react with other BEC analogs. We also developed a quantum dot-based assay (QDA) for the detection of BEC that was based upon a quantum dot (QD) composite probe. Under optimized reaction conditions, the linear range of this method for BEC was 0.1 to 10 μM with a low detection limit (LOD) of 0.1 μM. Subsequently, the method was used to detect BEC in Traditional Chinese Medicine (TCM) with a mean recovery of 81.72-91.84%. This is the first report to describe the development of an aptamer against BEC; BEC-6 can also be engineered into QDA for the detection of BEC.
Collapse
Affiliation(s)
- Hongli Fan
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaxiong Liu
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Jiamei Dong
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhuoya Luo
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China.
| |
Collapse
|
9
|
Wang Y, Li Z, Yu H. Aptamer-Based Western Blot for Selective Protein Recognition. Front Chem 2020; 8:570528. [PMID: 33195056 PMCID: PMC7658645 DOI: 10.3389/fchem.2020.570528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Selective protein recognition is critical in molecular biology techniques such as Western blotting and ELISA. Successful detection of the target proteins in these methods relies on the specific interaction of the antibodies, which often bring a high production cost and require a long incubation time. Aptamers represent an alternative class of simple and affordable affinity reagents for protein recognition, and replacing antibodies with aptamers in Western blotting would potentially be more time- and cost-effective. In this work, multiple fluorescent DNA aptamers were isolated by in vitro selection to selectively label commonly used tag proteins including GST, MBP, and His-tag. The generated aptamers G1, M1, and H1 specifically bound to their cognate target proteins with nanomolar affinities, respectively. Compared with conventional antibody-based immunoblotting, such aptamer-based procedure gave a cleaner background and was able to selectively label target protein in a complex mixture. Lastly, the identified aptamers were also effective in recognition of different fusion proteins with the same tag, thus greatly expanding the scope of the potential applications of these aptamers. This work provided aptamers as useful molecular tools for selective protein recognition in Western blotting analysis.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020; 597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Mercury (Hg2+) and silver (Ag+) ions possess the harmful effects on public health and environment that makes it essential to develop the sensing techniques with great sensitivity for the ions. Metal ions commonly coexist in the different biological and environmental systems. Hence, it is an urgent demand to design a simple method for the simultaneous detection of metal ions, peculiarly in the case of coexisting Hg2+ and Ag+. This study introduces a low-cost paper-based aptasensor to monitor Hg2+ and Ag+, simultaneously. The strategy of the sensing array is according to the conformational changes of Hg2+- and Ag+-specific aptamers and their release from the GO surface after the injection of the target sample on the sensing platform. Through monitoring the fluorescence recovery changes against the concentrations of the ions, Hg2+ and Ag+ can be determined as low as 1.33 and 1.01 pM. The paper-based aptasensor can simultaneously detect the ions within about 10 min. The aptasensor is applied prosperously to monitor Hg2+ and Ag+ in human serum, water, and milk. The designed aptasensor with the main advantages of simplicity and feasibility holds the supreme potential to develop a cost-effective sensing method for environmental monitoring, food control, and human diagnostics.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|