1
|
Liang Y, He YH, Yang SF, Xie SC, Lv YH, Cong W, Elsheikha HM, Zhu XQ. A novel cross-priming amplification technique combined with lateral flow strips for rapid and visual detection of zoonotic Toxoplasma gondii. Vet Parasitol 2025; 334:110402. [PMID: 39847832 DOI: 10.1016/j.vetpar.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil. Effective detection of T. gondii in environmental samples is essential for protecting public health and preventing disease transmission. In the present study, we developed a cross-priming amplification (CPA) assay coupled with lateral flow immunoassay strips for the rapid and visual detection of T. gondii in environmental samples. CPA offers simplicity and eliminates the need for complex laboratory equipment. The assay demonstrated high specificity, accurately identifying nine genotypes of T. gondii without cross-reacting with 11 related parasites. Sensitivity testing revealed a detection limit of 1 × 10² copies/μL at the molecular level (plasmid) and 10 oocysts in real-world environmental samples. Furthermore, CPA effectively detected T. gondii in diverse environmental samples, including soil, water, and cat feces, with results consistent with known infection rates. These findings underscore CPA's potential as a reliable, rapid, and accessible tool for detecting T. gondii in environmental settings, contributing to improved public health surveillance and disease prevention.
Collapse
Affiliation(s)
- Yao Liang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Yuan-Hui He
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Shu-Feng Yang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Yi-Han Lv
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong Province 264209, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
2
|
Kim GH, Shin DJ, Choi JY, Choi HD, Min JG, Kim KI. Rapid Visual Detection of Red Sea Bream Iridovirus Using a Novel Cross-Priming Amplification-Based Lateral Flow Assay. JOURNAL OF FISH DISEASES 2024:e14073. [PMID: 39708296 DOI: 10.1111/jfd.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Red sea bream iridovirus (RSIV) occurs mainly at high water temperatures and infects more than 30 different species of fish. In Asia, infected fish cause mass mortality every year. Molecular diagnostics is a technology that efficiently detects and identifies a wide range of fish pathogens through rapid and sensitive analysis of their genetic material. Rapid viral detection is essential for effective disease control. In this study, we developed and validated a cross-priming amplification-based lateral flow assay (CPA-LFA) suitable for field diagnosis owing to its short diagnostic time and simple diagnostic process. The CPA-LFA achieved optimal performance with concentrations of 4 mM MgSO4, 1.2 mM dNTPs and 0.7 M betaine, with the reaction conducted at 60°C for 60 min. The developed CPA-LFA could specifically identify RSIV without cross-reactivity with several pathogens commonly reported in various fish cell lines and fish. The 95% limit of detection (LOD95%) of CPA-LFA was 385.76 copies/μL, which was comparable to that of conventional polymerase chain reaction (PCR). Quantitative PCR (qPCR) was used to identify true-positive and true-negative samples from 210 fish samples (160 from cultured fish and 50 from artificially infected fish). Compared with qPCR, CPA-LFA classified six positive samples as false positives. The viral load of these samples was determined to be less than 195.1 copies/μL. The diagnostic sensitivity and specificity of CPA-LFA were 94.34% and 100%, respectively. Furthermore, inter-operator reproducibility testing yielded a kappa value of 1.0, indicating perfect agreement. Therefore, the novel CPA-LFA is especially well-suited for field diagnostics owing to its straightforward diagnostic procedure and capability to quickly and accurately detect RSIV.
Collapse
Affiliation(s)
- Guk Hyun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Dong Jun Shin
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ji Yeong Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Hyun Deok Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Joon Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Kwang Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Lin L, Wei H, Luo Q, Yang P, Liu M, Wang Z, Zou X, Zhu H, Zha G, Sun J, Zheng Y, Lin M. Design and development of a rapid meat detection system based on RPA-CRISPR/Cas12a-LFD. Curr Res Food Sci 2023; 7:100609. [PMID: 37860145 PMCID: PMC10582345 DOI: 10.1016/j.crfs.2023.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
In recent years, meat adulteration safety incidents have occurred frequently, triggering widespread attention and discussion. Although there are a variety of meat quality identification methods, conventional assays require high standards for personnel and experimental conditions and are not suitable for on-site testing. Therefore, there is an urgent need for a rapid, sensitive, high specificity and high sensitivity on-site meat detection method. This study is the first to apply RPA combined with CRISPR/Cas12a technology to the field of multiple meat identification. The system developed by parameter optimization can achieve specific detection of chicken, duck, beef, pork and lamb with a minimum target sequence copy number as low as 1 × 100 copies/μL for 60 min at a constant temperature. LFD test results can be directly observed with the naked eye, with the characteristics of fast, portable and simple operation, which is extremely in line with current needs. In conclusion, the meat identification RPA-CRISPR/Cas12a-LFD system established in this study has shown promising applications in the field of meat detection, with a profound impact on meat quality, and provides a model for other food safety control programs.
Collapse
Affiliation(s)
- Yaqun Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Huagui Wei
- Shool of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, PR China
| | - Qiulan Luo
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Peikui Yang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Mouquan Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Zhonghe Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Guangcai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Junjun Sun
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
- Shool of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, PR China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, Guangdong, PR China
- Shool of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, PR China
| |
Collapse
|
4
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023; 13:200. [PMID: 37215369 PMCID: PMC10193355 DOI: 10.1007/s13205-023-03628-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nucleic acids are prominent biomarkers for diagnosing infectious pathogens using nucleic acid amplification techniques (NAATs). PCR, a gold standard technique for amplifying nucleic acids, is widely used in scientific research and diagnosis. Efficient pathogen detection is a key to adequate food safety and hygiene. However, using bulky thermal cyclers and costly laboratory setup limits its uses in developing countries, including India. The isothermal amplification methods are exploited to develop miniaturized sensors against viruses, bacteria, fungi and other pathogenic organisms and have been applied for in situ diagnosis. Isothermal amplification techniques have been found suitable for POC techniques and follow WHO's ASSURED criteria. LAMP, NASBA, SDA, RCA and RPA are some of the isothermal amplification techniques which are preferable for POC diagnostics. Furthermore, methods such as WGA, CPA, HDA, EXPAR, SMART, SPIA and DAMP were introduced for even more accuracy and robustness. Using recombinant polymerases and other nucleic acid-modifying enzymes has dramatically broadened the detection range of target pathogens under the scanner. The coupling of isothermal amplification methods with advanced technologies such as CRISPR/Cas systems, fluorescence-based chemistries, microfluidics and paper-based sensors has significantly influenced the biosensing and diagnosis field. This review comprehensively analyzed isothermal nucleic acid amplification methods, emphasizing their advantages, disadvantages and limitations.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
6
|
Wang X, Jin W, Yang Y, Ma H, Liu H, Lei J, Wu Y, Zhang L. CRISPR/Cas12a-mediated Enzymatic recombinase amplification for rapid visual quantitative authentication of halal food. Anal Chim Acta 2023; 1255:341144. [PMID: 37032058 DOI: 10.1016/j.aca.2023.341144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Economically motivated adulteration (EMA) has become a concern in food safety. We propose a CRISPR/Cas12a Mediated Enzymatic Recombinase Amplification detection system (CAMERA) that integrates Enzymatic Recombinase Amplification (ERA) and Cas12a cleavage to detect halal food adulteration. We designed and screened crRNA targeting CLEC, a porcine-specific nuclear single-copy gene, and optimized the reagent concentrations and incubation times for the ERA and Cas12a cleavage steps. CAMERA was highly specific for pork ingredients detection. The DNA concentration and fluorescence signal intensity relationship was linear at DNA concentrations of 20-0.032 ng/μL. CAMERA detected as few as two CLEC copies and quantified samples with porcine DNA content as low as 5% within 25 min. The system could be operated in a miniaturized working mode that requires no technical expertise or professional equipment, making CAMERA a valuable tool in resource-limited areas for the qualitative and quantitative detection of pork ingredients in halal food.
Collapse
Affiliation(s)
- Xiaohui Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyu Jin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yao Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huizi Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Honghong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiawen Lei
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
Xu H, Lan H, Pan D, Xu J, Wang X. Visual Detection of Chicken Adulteration Based on a Lateral Flow Strip-PCR Strategy. Foods 2022; 11:foods11152351. [PMID: 35954117 PMCID: PMC9368418 DOI: 10.3390/foods11152351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to develop an accurate, easy-to-use, and cost-effective method for the detection of chicken adulteration based on polymerase chain reaction (PCR) and lateral flow strip (LFS). We compared six DNA extraction methods, namely the cetyltrimethylammonium bromide (CTAB) method, salt method, urea method, SDS method, guanidine isothiocyanate method, and commercial kit method. The chicken cytb gene was used as a target to design specific primers. The specificity and sensitivity of the PCR-LFS system were tested using a self-assembled lateral flow measurement sensor. The results showed that the DNA concentration obtained by salt methods is up to 533 ± 84 ng µL−1, is a suitable replacement for commercial kits. The PCR-LFS method exhibits high specificity at an annealing temperature of 62 °C and does not cross-react with other animal sources. This strategy is also highly sensitive, being able to detect 0.1% of chicken in artificial adulterated meat. The results of the test strips can be observed with the naked eye within 5 min, and this result is consistent with the electrophoresis result, demonstrating its high accuracy. Moreover, the detection system has already been successfully used to detect chicken in commercial samples. Hence, this PCR-LFS strategy provides a potential tool to verify the authenticity of chicken.
Collapse
Affiliation(s)
- Haoyi Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence: (H.L.); (X.W.)
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
8
|
Wen X, Xie Q, Li J, Pei Y, Bai Y, Liu F, Cui H, Shao G, Feng Z. Rapid and sensitive detection of African swine fever virus in pork using recombinase aided amplification combined with QDMs-based test strip. Anal Bioanal Chem 2022; 414:3885-3894. [PMID: 35380231 DOI: 10.1007/s00216-022-04030-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
African swine fever virus (ASFV) is the pathogen of African swine fever, a highly contagious and fatal disease of wild boar and domestic pigs. The flow of ASFV through pork products is more concealed, higher risky, and more difficult to prevent and control. Presently, on-site ASFV detection methods in preclinical infected pigs and circulated pork products are lacking. Here, fluorescent test strip-based rapid ASFV detection method in pork was established combined with recombinase aided amplification (RAA) and quantum dot microspheres (QDMs). This method is specific to ASFV with no cross-reactivity to pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), and porcine reproductive and respiratory syndrome virus (PRRSV). The method also showed highly sensitivity with a detection limit of 1 copy for ASFV plasmid templates containing B646L gene and 100 copies/g for DNA extracts from clinical pork samples within a short detection time of less than 25 min. Additionally, the method showed 99.17% consistency with real-time PCR in the ASFV detection of 120 clinical pork samples. Overall, the QDMs-based test strip method provides specific, sensitive, rapid, and simple detection of ASFV in pork, which may contribute to maintain the food safety of pork products, and facilitate ASFV traceability and prevention. Rapid and sensitive detection of African swine fever virus in pork by QDMs based test strip assay.
Collapse
Affiliation(s)
- Xiaoyun Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jiahao Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanrui Pei
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yun Bai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
9
|
Sang P, Hu Z, Cheng Y, Yu H, Xie Y, Yao W, Guo Y, Qian H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5783-5797. [PMID: 34009975 DOI: 10.1021/acs.jafc.0c07980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An immunoassay is mostly employed for the direct detection of food contaminants, and a molecular assay for targeting nucleic acids employs amplification techniques for distinguishing genes. The integration of an immunoassay with nucleic acid amplification techniques inherits the direct and rapid performance of an immunoassay and the ultrasensitive merit of a molecular assay. Enthusiastic attention has been attracted in recent years on the utilization of isothermal amplification techniques in an immunoassay, as well as the employment of a lateral flow immunoassay in a molecular assay. Thus, this Review discussed these kinds of approaches from two categories: immuno-nucleic acid amplification (I-NAA) and nucleic acid amplification-immunoassay (NAA-I). The advantages, drawbacks, and future developments were discussed for a comprehensive understanding.
Collapse
Affiliation(s)
- Panting Sang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Wu S, Shi X, Chen Q, Jiang Y, Zuo L, Wang L, Jiang M, Lin Y, Fang S, Peng B, Wu W, Liu H, Zhang R, Kwan PSL, Hu Q. Comparative evaluation of six nucleic acid amplification kits for SARS-CoV-2 RNA detection. Ann Clin Microbiol Antimicrob 2021; 20:38. [PMID: 34022903 PMCID: PMC8140580 DOI: 10.1186/s12941-021-00443-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a newly emerged coronavirus, causing the coronavirus disease 2019 (COVID-19) outbreak in December, 2019. As drugs and vaccines of COVID-19 remain in development, accurate virus detection plays a crucial role in the current public health crisis. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) kits have been reliably used for detection of SARS-CoV-2 RNA since the beginning of the COVID-19 outbreak, whereas isothermal nucleic acid amplification-based point-of-care automated kits have also been considered as a simpler and rapid alternative. However, as these kits have only been developed and applied clinically within a short timeframe, their clinical performance has not been adequately evaluated to date. We describe a comparative study between a newly developed cross-priming isothermal amplification (CPA) kit (Kit A) and five RT-qPCR kits (Kits B-F) to evaluate their sensitivity, specificity, predictive values and accuracy. METHODS Fifty-two clinical samples were used including throat swabs (n = 30), nasal swabs (n = 7), nasopharyngeal swabs (n = 7) and sputum specimens (n = 8), comprising confirmed (n = 26) and negative cases (n = 26). SARS-CoV-2 detection was simultaneously performed on each sample using six nucleic acid amplification kits. The sensitivity, specificity, positive/negative predictive values (PPV/NPV) and the accuracy for each kit were assessed using clinical manifestation and molecular diagnoses as the reference standard. Reproducibility for RT-qPCR kits was evaluated in triplicate by three different operators using a SARS-CoV-2 RNA-positive sample. On the basis of the six kits' evaluation results, CPA kit (Kit A) and two RT-qPCR Kits (Kit B and F) were applied to the SARS-CoV-2 detection in close-contacts of COVID-19 patients. RESULTS For Kit A, the sensitivity, specificity, PPV/NPV and accuracy were 100%. Among the five RT-qPCR kits, Kits B, C and F had good agreement with the clinical diagnostic reports (Kappa ≥ 0.75); Kits D and E were less congruent (0.4 ≤ Kappa < 0.75). Differences between all kits were statistically significant (P < 0.001). The reproducibility of RT-qPCR kits was determined using a coefficients of variation (CV) between 0.95% and 2.57%, indicating good reproducibility. CONCLUSIONS This is the first comparative study to evaluate CPA and RT-qPCR kits' specificity and sensitivity for SARS-CoV-2 detection, and could serve as a reference for clinical laboratories, thus informing testing protocols amid the rapidly progressing COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuang Wu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Lei Wang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Bo Peng
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Patrick S L Kwan
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Development of Diagnostic Tests Provides Technical Support for the Control of African Swine Fever. Vaccines (Basel) 2021; 9:vaccines9040343. [PMID: 33918128 PMCID: PMC8067252 DOI: 10.3390/vaccines9040343] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever is a highly contagious global disease caused by the African swine fever virus. Since African swine fever (ASF) was introduced to Georgia in 2007, it has spread to many Eurasian countries at an extremely fast speed. It has recently spread to China and other major pig-producing countries in southeast Asia, threatening global pork production and food security. As there is no available vaccine at present, prevention and control must be carried out based on early detection and strict biosecurity measures. Early detection should be based on the rapid identification of the disease on the spot, followed by laboratory diagnosis, which is essential for disease control. In this review, we introduced the prevalence, transmission routes, eradication control strategies, and diagnostic methods of ASF. We reviewed the various methods of diagnosing ASF, focusing on their technical characteristics and clinical test results. Finally, we give some prospects for improving the diagnosis strategy in the future.
Collapse
|
12
|
Yu W, Chen Y, Wang Z, Qiao L, Xie R, Zhang J, Bian S, Li H, Zhang Y, Chen A. Multiple authentications of high-value milk by centrifugal microfluidic chip-based real-time fluorescent LAMP. Food Chem 2021; 351:129348. [PMID: 33647699 DOI: 10.1016/j.foodchem.2021.129348] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Adulteration of food ingredients, particularly replacement of high-value milk with low-cost milk, affects food safety. For rapid and accurate identification of the possible adulterating milk species in an unknown sample, a centrifugal microfluidic chip-based real-time fluorescent multiplex loop-mediated isothermal amplification (LAMP) assay was developed to simultaneously detect milk from cow, camel, horse, goat, and yak. Using precoated primers in different reaction wells, the centrifugal microfluidic chip markedly simplified the detection process and reduced false-positive results. The entire amplification was completed within 90 min with a genomic detection limit of 0.05 ng/µL in cow, camel, horse, and goat milk and 0.005 ng/µL in yak milk. Using simulated adulterated samples for validation, the detection limit for adulterated milk samples was 2.5%, satisfying authentication requirements, as the proportion of adulterated milk higher than 10% affects economic interests. Therefore, this simple, centrifugal, microfluidic chip-based multiplex real-time fluorescent LAMP assay can simultaneously detect common milk species in commercial products to enable accurate labeling.
Collapse
Affiliation(s)
- Wenjie Yu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yanjing Chen
- Willingmed Corporation, 156 Jinghai Industrial Parkway, Daxing District, Beijing 100176, People's Republic of China; CapitalBio Corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Zhiying Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Lu Qiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ruibin Xie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Suying Bian
- CapitalBio Corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Hui Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yan Zhang
- Willingmed Corporation, 156 Jinghai Industrial Parkway, Daxing District, Beijing 100176, People's Republic of China; CapitalBio Corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
13
|
Guan Y, Wang K, Zeng Y, Ye Y, Chen L, Huang T. Development of a Direct and Rapid Detection Method for Viable but Non-culturable State of Pediococcus acidilactici. Front Microbiol 2021; 12:687691. [PMID: 34276618 PMCID: PMC8283312 DOI: 10.3389/fmicb.2021.687691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Pediococcus acidilactici may significantly reduce the pH-value, and thus has different influence, including serving as a probiotic in human microbiota but a spoilage in human food as it could change the flavor. Pediococcus acidilactici is also capable of entering into the viable but non-culturable (VBNC) state causing false negative results of standard culture-based detection method. Thus, development of detection method for VBNC state P. acidilactici is of great significance. In this study, propidium monoazide (PMA) combined with cross priming amplification (CPA) was developed to detect the VBNC cells of P. acidilactici and applied on the detection in different systems. With detection limit of 104 cells/ml, high sensitivity, and 100% specificity, PMA-CPA can successfully detect VBNC cells of P. acidilactici and be applied in with high robustness.
Collapse
Affiliation(s)
- Yu Guan
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yu Guan
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Zeng
- Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang
| |
Collapse
|
14
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|