1
|
Pham TT, Kim JY, Tuomivaara ST, Lee YI, Kim S, Wells L, Lim JM. Triplex glycan quantification by metabolic labeling with isotopically labeled glucose in yeast. Anal Chim Acta 2024; 1288:342114. [PMID: 38220268 DOI: 10.1016/j.aca.2023.342114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Mass spectrometry-based approaches encompass a powerful collection of tools for the analysis biological molecules, including glycans and glycoconjugates. Unlike most traditional bioanalytical methods focusing on these molecules, mass spectrometry is especially suited for multiplexing, by utilizing stable-isotope labeling. Indeed, stable isotope-based multiplexing can be regarded as the gold-standard approach in reducing noise and uncertainty in quantitative mass spectrometry and quantitative analyses generally. The increasing sophistication and depth of biological questions being asked continue to challenge the practitioners of mass spectrometry method development. To understand the biological relevance of glycans, many stable isotope labeling-based mass spectrometry methods have been developed. Based on the duplex MILPIG (metabolic isotope labeling of polysaccharides with isotopic glucose), we establish here a novel triplex isotope labeling method using baker's yeast as the model system. Two differentially isotope-labeled glucoses (medium: 1-13C1 and heavy: 1,2-13C2), in addition to natural abundance glucose (light), were successfully used to label each monosaccharide ring in N-linked glycans in three different cell culture conditions, that, after sample mixing, resulted in a predictable triplet spectrum amenable for relative quantitation. We demonstrate excellent accuracy and precision of relative quantitation for a 1:1:1 mixture of glycans labeled in such a fashion. In addition, we applied triplex MILPIG to interrogate differential N-glycan profiles in tunicamycin-treated and control yeast cells and show that different N-glycans respond differently to tunicamycin.
Collapse
Affiliation(s)
- Thao Thi Pham
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Ji-Yeon Kim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Sami T Tuomivaara
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, The Republic of Uzbekistan
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Jae-Min Lim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea.
| |
Collapse
|
2
|
Li XL, Li Y, Xiao S, Li Q, Han C, Liu D, Cui T, Rao X, Todoroki K, Yang G, Min JZ. Stable isotope labeling differential glycans discovery in the serum of acute myocardial infarction by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high resolution mass spectrometry. Anal Chim Acta 2023; 1264:341269. [PMID: 37230719 DOI: 10.1016/j.aca.2023.341269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) poses a grave threat to human life. However, most clinical biomarkers have limitations of low sensitivity and specificity. Therefore, screening novel glycan biomarkers with high sensitivity and specificity is crucial for the prevention and treatment of AMI. The novel method of ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) with d0/d5-BOTC probe labeling for relative quantification of glycans based on Pronase E digestion was established to screen novel glycan biomarkers in the serum of 34 AMI patients relative to healthy volunteers. The monosaccharide model D-glucosamine was used to investigate the effectiveness of the derivatization; the limit of detection (S/N = 3) was 10 amol. The accuracy was verified based on the consistency of different theoretical molar ratios (d0/d5 = 1:2, 2:1) and intensity ratios following digestion of glycoprotein ribonuclease B. Expressions of H4N4F3SA, H4N6F2, H4N6SA, H4N6F3 and H5N4FSA in the serum were significantly different (p < 0.0005) between AMI patients and healthy volunteers. The area under the receiver operating characteristic curve (AUC) for H4N6SA, H5N4FSA, and H4N6F2 was greater than 0.9039. Based on the proposed method, H4N6SA, H5N4FSA, and H4N6F2 in human serum showed high accuracy and specificity and may serve as potential glycan biomarkers, crucial for the diagnosis and treatment monitoring of AMI.
Collapse
Affiliation(s)
- Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Yuxuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Shuyun Xiao
- Department of Pharmacy of Tianjin Children's Hospital, Tianjin, 300202, China
| | - Qingsong Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Danyang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Tengfei Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Xiyang Rao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
3
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
4
|
Kim J, Yin D, Lee J, An HJ, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ): Application to Glycomics. Anal Chem 2021; 93:14497-14505. [PMID: 34724788 DOI: 10.1021/acs.analchem.1c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dongtan Yin
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jua Lee
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
6
|
Quantification of 2-NBDG, a probe for glucose uptake, in GLUT1 overexpression in HEK293T cells by LC-MS/MS. Anal Biochem 2021; 631:114357. [PMID: 34469746 DOI: 10.1016/j.ab.2021.114357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023]
Abstract
The growth and proliferation of most cancer cells involve the excessive uptake of glucose mediated by glucose transporters. An effective strategy for cancer therapy has been to inhibit the GLUTs that are usually overexpressed in a variety of tumor cells. 2-NBDG is a GLUT1 substrate that can be used as a probe for GLUT1 inhibitors. An accurate and simple assay for 2-NBDG in a HEK293T cell model overexpressing GLUT1 was developed using liquid chromatography-tandem mass spectrometry. Chromatographic separation was achieved using a Xbridge® Amide column (3.5 μm, 2.1 mm × 150 mm, Waters) with acetonitrile-water containing 2 μM ammonium acetate (80:20, v/v) at a flow rate of 0.25 mL/min. Mass detection was conducted in the parallel reaction monitoring (PRM) mode. The calibration curve for 2-NBDG showed good linearity in the concentration range of 5-500 ng/mL with satisfactory precision, a relative standard deviation ranging from 2.92 to 9.59% and accuracy with a relative error ranging from -13.14 to 7.34%. This method was successfully applied to quantify the uptake of GLUT1-mediated 2-NBDG, and the results clearly indicated inhibition of GLUT1 by WZB117 and quercetin (two potent glucose transporter inhibitors) in the GLUT1-HEK293T cell model. This study provides a convenient and accurate method for high-throughput screening of selective and promising GLUT1 inhibitors.
Collapse
|
7
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|