1
|
Qin H, Wang Q, Xu J, Zeng H, Liu J, Yu F, Yang J. Integrative analysis of anoikis-related genes prognostic signature with immunotherapy and identification of CDKN3 as a key oncogene in lung adenocarcinoma. Int Immunopharmacol 2024; 143:113282. [PMID: 39383787 DOI: 10.1016/j.intimp.2024.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Anoikis, a form of programmed cell death induced by loss of cell contact, is closely associated with tumor invasion and metastasis, making it highly significant in lung cancer research. We examined the expression patterns and prognostic relevance of Anoikis-related genes (ARGs) in lung adenocarcinoma (LUAD) using the TCGA-LUAD database. This study identified molecular subtypes associated with Anoikis in LUAD and conducted functional enrichment analyses. We constructed an ARG risk score using univariate least absolute shrinkage and selection operator (LASSO) Cox regression, validated externally with GEO datasets and clinical samples. The clinical applicability of the prognostic model was evaluated using nomograms, calibration curves, decision curve analysis (DCA), and time-dependent AUC assessments. We identified four prognostically significant genes (PLK1, SLC2A1, CDKN3, PHLDA2) and two ARG-related molecular subtypes. ARGs were generally upregulated in LUAD and correlated with multiple pathways including the cell cycle and DNA replication. The prognostic model indicated that the low-risk group had better outcomes and significant correlations with clinicopathological features, tumor microenvironment, immune therapy responses, drug sensitivity, and pan-RNA epigenetic modification-related genes. Patients with low-risk LUAD were potential beneficiaries of immune checkpoint inhibitor (ICI) therapy. Prognostic ARGs' distribution and expression across various immune cell types were further analyzed using single-cell RNA sequencing. The pivotal role of CDKN3 in LUAD was confirmed through qRT-PCR and gene knockout experiments, demonstrating that CDKN3 knockdown inhibits tumor cell proliferation, migration, and invasion. Additionally, we constructed a ceRNA network involving CDKN3/hsa-miR-26a-5p/SNHG6, LINC00665, DUXAP8, and SLC2A1/hsa-miR-218-5p/RNASEH1-AS1, providing new insights for personalized and immune therapy decisions in LUAD patients.
Collapse
Affiliation(s)
- Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qichang Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei 238001, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
2
|
Chen YR, Jiang WP, Deng JS, Chou YN, Wu YB, Liang HJ, Lin JG, Huang GJ. Anisomeles indica Extracts and Their Constituents Suppress the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro. Int J Mol Sci 2023; 24:15062. [PMID: 37894745 PMCID: PMC10606724 DOI: 10.3390/ijms242015062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), stemming from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact. This highly contagious pneumonia remains a significant ongoing threat. Uncertainties persist about the virus's effects on human health, underscoring the need for treatments and prevention. Current research highlights angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key targets against SARS-CoV-2. The virus relies on ACE2 to enter cells and TMPRSS2 to activate its spike protein. Inhibiting ACE2 and TMPRSS2 expression can help prevent and treat SARS-CoV-2 infections. Anisomeles indica (L.) Kuntze, a medicinal plant in traditional Chinese medicine, shows various promising pharmacological properties. In this study, ethanolic extracts of A. indica were examined both in vivo (250 and 500 μM) and in vitro (500 μM). Through Western blotting analysis, a significant reduction in the expression levels of ACE2 and TMPRSS2 proteins was observed in HepG2 (human hepatocellular carcinoma) cells and HEK 293T (human embryonic kidney) cell lines without inducing cellular damage. The principal constituents of A. indica, namely, ovatodiolide (5 and 10 μM), anisomlic acid (5 and 10 μM), and apigenin (12.5 and 25 μM), were also found to produce the same effect. Furthermore, immunohistochemical analysis of mouse liver, kidney, and lung tissues demonstrated a decrease in ACE2 and TMPRSS2 protein expression levels. Consequently, this article suggests that A. indica and its constituents have the potential to reduce ACE2 and TMPRSS2 protein expression levels, thus aiding in the prevention of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Yeh-Bin Wu
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Hui-Ju Liang
- Arjil Pharmaceuticals LLC, Hsinchu 300, Taiwan; (Y.-B.W.); (H.-J.L.)
| | - Jaung-Geng Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.C.); (Y.-N.C.); (J.-G.L.)
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan;
| |
Collapse
|
3
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
4
|
Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, Wang X, Wang B, Hu J. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology 2023; 488:153475. [PMID: 36870413 DOI: 10.1016/j.tox.2023.153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Study on the potential of Sanghuangporus sanghuang and its components as COVID-19 spike protein receptor binding domain inhibitors. Biomed Pharmacother 2022; 153:113434. [PMID: 36076488 PMCID: PMC9288968 DOI: 10.1016/j.biopha.2022.113434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has led to the most severe global pandemic, which began in Wuhan, China. Angiotensin-converting enzyme 2 (ACE2) combines with the spike protein of SARS-CoV-2, allowing the virus to cross the membrane and enter the cell. SARS-CoV-2 is modified by the transmembrane protease serine 2 (TMPRSS2) to facilitate access to cells. Accordingly, ACE2 and TMPRSS2 are targets of vital importance for the avoidance of SARS-CoV-2 infection. Sanghuangporus sanghuang (SS) is a traditional Chinese medicine that has been demonstrated to have antitumor, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective and immunomodulatory properties. In this paper, we demonstrated that SS decreased ACE2 and TMPRSS2 expression in cell lines and a mouse model without cytotoxicity or organ damage. Liver and kidney sections were confirmed to have reduced expression of ACE2 and TMPRSS2 by immunohistochemistry (IHC) assessment. Then, hispidin, DBA, PAC, PAD and CA, phenolic compounds of SS, were also tested and verified to reduce the expression of ACE2 and TMPRSS2. In summary, the results indicate that SS and its phenolic compounds have latent capacity for preventing SARS-CoV-2 infection in the future.
Collapse
|