1
|
Hassibian S, Esmaelpourfarkhani M, Abnous K, Amin M, Ghazvinian F, Alibolandi M, Ramezani M, Nameghi MA, Mollasalehi H, Farrokhi N, Dehnavi SM, Taghdisi SM. A turn-on fluorescent aptasensor for Pb 2+ detection based on rhodamine B dye leakage from the internal cavity of hollow gold nanoparticles. Food Chem 2025; 463:141440. [PMID: 39348770 DOI: 10.1016/j.foodchem.2024.141440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
In this project, a sensitive fluorescent aptasensor was fabricated to detect lead ions (Pb2+) by applying hollow gold nanoparticles (HGNPs) as a nano-carrier and rhodamine B (RDB) fluorescent dye as the signal agent. In the aptasensor that was created, the specific attachment of the aptamers to Pb2+ ions led to the release of aptamer from the chitosan (CTS) coated-HGNPs loaded with RDB, causing an increase in fluorescence intensity due to the leakage of RDB. The method demonstrated specific detection of the target analyte, achieving a detection limit (LOD) of 1 ppb and a broad linear dynamic range spanning from 2 to 1000 ppb. The aptasensor was able to accurately measure the concentration of Pb2+ in human serum, low-fat milk, and mineral water samples. The suggested biosensor, which offers the benefits of simplicity, user-friendliness, affordability, and high sensitivity, is well-suited for use with complex samples such as environmental and clinical samples.
Collapse
Affiliation(s)
- Sepideh Hassibian
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Amin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ghazvinian
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Mollasalehi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Hou L, Wei J, Xiang C, Yang D, Yang Y. A colorimetric sensor for the sensitive and rapid detection of ampicillin based on CS-Cu,Fe/HS nanozyme. Mikrochim Acta 2024; 192:36. [PMID: 39729133 DOI: 10.1007/s00604-024-06895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2 to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe2+/Fe3+ and Cu2+/Cu+. Interestingly, the POD-like activity of CS-Cu,Fe/HS is inhibited with the introduction of ampicillin (AMP), which may be because the Cu and Fe ions in CS-Cu,Fe/HS form complexes with AMP, leading to changes in the structure or surface properties of the nanozyme, thereby reducing the number of active sites on the nanozyme. Drawing from this, a straightforward and reliable colorimetric sensor was constructed for AMP detection, featuring a linear range of 0.033 to 110 μg/mL and a detection limit as low as 11.6 ng/mL. The proposed detection method for AMP performed well in real samples, with recoveries ranging from 94.8% to 110.2%.
Collapse
Affiliation(s)
- Linqian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jinya Wei
- Yunnan High-Tech Enterprise Development Promotion Association, Kunming, 650021, People's Republic of China
| | - Chen Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
3
|
Zhu G, Zou J, Lin X, Zhong H, Jiang C, Huang Y. Manganese-arginine nanozymes as oxidase mimics for smartphone-based intelligent detection of 4'-O-methylpyridoxine. Mikrochim Acta 2024; 191:654. [PMID: 39377950 DOI: 10.1007/s00604-024-06736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
By self-assembly of MnCl2 and arginine under alkaline conditions, ultra-small MnArg nanoparticles were successfully constructed as oxidase (OXD) mimics for intelligent detection of the Ginkgo toxin 4'-O-methylpyridoxal (MPN). The obtained MnArg nanozymes possessed excellent OXD-like activity and thermal stability. Based on the inhibitory effect of MPN for the catalytic activity of MnArg, this system was utilized for the colorimetric sensing of MPN with a low limit of detection (LOD) of 2.16 µg mL-1. The detection system exhibited good selectivity against other potential interferents. FTIR data showed that the presence of MPN binds with MnArg and shields the active sites, thereby interfering with the oxidase-like activity. Combined with a smartphone and the ColorMax software, this nanozyme-based intelligent detection platform could effectively detect MPN with a LOD of 2.1 µg mL-1. Our MnArg nanozyme-based system was applied to detect real ginkgo nut samples with recoveries of 92.4-108.7%, and the relative standard deviations were less than 0.7%. This work may promote the development of novel nanozymes and expand their applications in the field of food safety detection.
Collapse
Affiliation(s)
- Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueer Lin
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Ren L, Ma S, Li C, Wang D, Zhang P, Wang L, Qin Z, Jiang L. Development of a highly sensitive ampicillin sensor utilizing functionalized aptamers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3522-3529. [PMID: 38775028 DOI: 10.1039/d4ay00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To develop a sensitive and simple ampicillin (AMP) sensor for trace antibiotic residue detection, the influencing factors of the modification effect of nanogold-functionalized nucleic acid sequences (Adenine: A, Thymine: T) were comprehensively analyzed in this study, including the modification method, base length and type. It was found that under the same base concentration, longer chains are more likely to reach saturation than shorter chains; and when the base concentration and length are both the same, A exhibits a higher saturation modification level compared to T. Based on these research findings, a highly sensitive fluorescence aptamer sensor for detecting ampicillin was constructed using the optimized functionalized sequence (ployA6-aptamer) and experimental conditions (6 hours binding time between nucleic acid aptamer and complementary strand, pH 7 working solution, 20 minutes detection time) based on the principle of fluorescence resonance energy transfer. The sensor has a detection range of 0.18 ng ml-1 to 3.11 ng ml-1 for ampicillin, with a detection limit of 0.04 ng ml-1. It exhibits significant selectivity and achieves an average recovery rate of 98.71% in tap water and 91.83% in milk. This method can be used not only for residual ampicillin detection, but also for highly sensitive detection of various antibiotics and small biological molecules by replacing the aptamer type. It provides a research basis for the design of highly sensitive fluorescence aptamer sensors and further applications of nanogold@DNA composite structures.
Collapse
Affiliation(s)
- Linjiao Ren
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Shilin Ma
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chenlong Li
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Diankang Wang
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Pei Zhang
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Lingli Wang
- College of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Zirui Qin
- College of Electrical and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Liying Jiang
- College of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
5
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. CRISPR-Cas12a-based colorimetric aptasensor for aflatoxin M1 detection based on oxidase-mimicking activity of flower-like MnO 2 nanozymes. Talanta 2024; 271:125729. [PMID: 38306811 DOI: 10.1016/j.talanta.2024.125729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Given the highly mutagenic and carcinogenic nature of Aflatoxin M1 (AFM1), the quantity assessment of AFM1 residues in milk and dairy products is necessary to maintain consumer health and food safety. Herein, CRISPR-Cas12a-based colorimetric aptasensor was developed using the catalytic activity of flower-like nanozymes of MnO2 and trans-cleavage property of CRISPR-Cas12a system to quantitatively detect AFM1. The basis of the developed colorimetric aptasensor relies on whether or not the CRISPR-Cas12a system is activated, as well as the contrast in oxidase-mimicking capability exhibited by flower-like MnO2 nanozymes when AFM1 is absent or present. When AFM1 is not present in the sample, single-stranded DNA (ssDNA) is degraded by the activated CRISPR-Cas12a, and the solution turns into yellow due to the catalytic activity of the nanozymes. While, in the attendance of AFM1, ssDNA degradation does not occur due to the inactivation of the CRISPR-Cas12a. Therefore, with the adsorption of the ssDNA on the MnO2 nanozymes, their catalytic activity decreases, and the solution color becomes pale yellow due to less oxidation of the chromogenic substrate. In this aptasensor, the relative absorbance changes increased linearly from 6 to 160 ng L-1, and the detection limit was 2.1 ng L-1. The developed aptasensor displays a selective detection performance and a practical application for quantitative analysis of AFM1 in milk samples. The results of the introduced aptasensor open up the way to design other selective and sensitive aptasensors for the detection of other mycotoxins by substitution of the used sequences.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|