1
|
Sanches JM, Branco LM, Duarte GHB, Oliani SM, Bortoluci KR, Moreira V, Gil CD. Annexin A1 Regulates NLRP3 Inflammasome Activation and Modifies Lipid Release Profile in Isolated Peritoneal Macrophages. Cells 2020; 9:cells9040926. [PMID: 32283822 PMCID: PMC7226734 DOI: 10.3390/cells9040926] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Annexin A1 (AnxA1) is a potent anti-inflammatory protein that downregulates proinflammatory cytokine release. This study evaluated the role of AnxA1 in the regulation of NLRP3 inflammasome activation and lipid release by starch-elicited murine peritoneal macrophages. C57bl/6 wild-type (WT) and AnxA1-null (AnxA1-/-) mice received an intraperitoneal injection of 1.5% starch solution for macrophage recruitment. NLRP3 was activated by priming cells with lipopolysaccharide for 3 h, followed by nigericin (1 h) or ATP (30 min) incubation. As expected, nigericin and ATP administration decreased elicited peritoneal macrophage viability and induced IL-1β release, more pronounced in the AnxA1-/- cells than in the control peritoneal macrophages. In addition, nigericin-activated AnxA1-/- macrophages showed increased levels of NLRP3, while points of co-localization of the AnxA1 protein and NLRP3 inflammasome were detected in WT cells, as demonstrated by ultrastructural analysis. The lipidomic analysis showed a pronounced release of prostaglandins in nigericin-stimulated WT peritoneal macrophages, while ceramides were detected in AnxA1-/- cell supernatants. Different eicosanoid profiles were detected for both genotypes, and our results suggest that endogenous AnxA1 regulates the NLRP3-derived IL-1β and lipid mediator release in macrophages.
Collapse
Affiliation(s)
- José Marcos Sanches
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
- Faculdade de Medicina, Universidade do Oeste Paulista, Guarujá, São Paulo 11410-980, Brazil
| | - Laura Migliari Branco
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil; (L.M.B.); (K.R.B.)
| | | | - Sonia Maria Oliani
- Programa de Pós-Graduação em Biociências, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil;
| | - Karina Ramalho Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil; (L.M.B.); (K.R.B.)
| | - Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil;
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
- Programa de Pós-Graduação em Biociências, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil;
- Correspondence: ; Tel.: +55-011-5576-4268
| |
Collapse
|
2
|
Wu Z, Lee B, Song KS, Liu KH. Inhibitory Potential of Thelephoric Acid on CYP2J2 Activities in Human Liver Microsomes. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.9.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
García-Martín E, Martínez C, Ladero JM, Agúndez JAG. Interethnic and Intraethnic Variability of CYP2C8 and CYP2C9 Polymorphisms in Healthy Individuals. Mol Diagn Ther 2012; 10:29-40. [PMID: 16646575 DOI: 10.1007/bf03256440] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 (CYP) superfamily members CYP2C8 and CYP2C9 are polymorphically expressed enzymes that are involved in the metabolic inactivation of several drugs, including, among others, antiepileptics, NSAIDs, oral hypoglycemics, and anticoagulants. Many of these drugs have a narrow therapeutic index, and growing evidence indicates a prominent role of CYP2C8 and CYP2C9 polymorphisms in the therapeutic efficacy and in the development of adverse effects among patients treated with drugs that are CYP2C8 or CYP2C9 substrates. In this review, we summarize present knowledge on human variability in the frequency of variant CYP2C8 and CYP2C9 alleles. Besides an expected interethnic variability in allele frequencies, a large intraethnic variability exists. Among Asian subjects, for example, statistically significant differences (p < 0.0001) in CYP2C9*3 allele frequencies between Chinese and Japanese individuals have been reported. In addition, individuals from East Asia present different allele frequencies for CYP2C9*2 and CYP2C9*3 compared with South Asian subjects (p < 0.0001). Among Caucasian Europeans, statistically significant differences for the frequency of CYP2C8*3, CYP2C9*2, and CYP2C9*3 exist (p < 0.0001). This indicates that Asian individuals or Caucasian European individuals cannot be considered as homogeneous groups regarding CYP2C8 or CYP2C9 allele frequencies. Caucasian American subjects also show a large variability in allele frequencies, which is likely to be related to ethnic ancestry. A higher frequency of variant CYP2C8 and CYP2C9 alleles is expected among Caucasian Americans with South European ancestry than in individuals with North European ancestry. The findings summarized in this review suggest that among individuals with Asian or European ancestry, intraethnic differences in the risk of developing adverse effects with drugs that are CYP2C8 or CYP2C9 substrates are to be expected. In addition, the observed intraethnic variability reinforces the need for proper selection of control subjects and points against the use of surrogate control groups for studies involving association of CYP2C8 or CYP2C9 alleles with adverse drug reactions or spontaneous diseases.
Collapse
Affiliation(s)
- Elena García-Martín
- Department of Biochemistry & Molecular Biology, School of Sciences, University of Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
4
|
Aggarwal NT, Gauthier KM, Campbell WB. Endothelial nitric oxide and 15-lipoxygenase-1 metabolites independently mediate relaxation of the rabbit aorta. Vascul Pharmacol 2011; 56:106-12. [PMID: 22197897 DOI: 10.1016/j.vph.2011.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Endothelial 15-lipoxygenase-1 (15-LO-1) metabolites of arachidonic acid (AA), 11,12,15-trihydroxyeicosatrienoic acid (THETA) and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and nitric oxide (NO) mediate relaxations to acetylcholine (ACH). However, interactions between NO and the 15-LO-1 pathway have not been explored. Therefore, the effect of physiological and pharmacological concentrations of NO on 15-LO activity and relaxation was studied in rabbit aorta. In indomethacin-treated aortic rings, maximal ACH relaxations of 91.3±4.0%, decreased to 54.5±3.0% by the NO synthase inhibitor, nitro-l-arginine (LNA), to 49.8±3% by the guanylate cyclase (GC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, to 63.7±4.9% by the lipoxygenase (LO) inhibitor, nordihydroguaiaretic acid (NDGA) and were completely inhibited by the combination of LNA and NDGA. AA relaxations were not affected by GC inhibition but were reduced by LO inhibition. The NO donor, dipropylenetriamine-NONOate (DPTA) caused concentration-related relaxations (EC(50)=4.7×10(-6)M). Aortic metabolism of (14)C-AA to THETA and HEETA was not altered by EC(50) concentrations of DPTA but were reduced 10-fold by 10(-3)M DPTA. In LNA-treated aorta, DPTA (3×10(-6)M) caused relaxations of 38.2.5±4%. Maximum relaxations to ACH did not differ in the presence and absence 3×10(-6)M DPTA (49.5±5% and 44.2±4%, respectively). These results indicate that NO and 15-LO-1 act in parallel to mediate ACH relaxations and NO does not alter 15-LO-1 activity.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
5
|
Gauthier KM, Goldman DH, Aggarwal NT, Chawengsub Y, Falck JR, Campbell WB. Role of arachidonic acid lipoxygenase metabolites in acetylcholine-induced relaxations of mouse arteries. Am J Physiol Heart Circ Physiol 2010; 300:H725-35. [PMID: 21193584 DOI: 10.1152/ajpheart.00696.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arachidonic acid (AA) metabolites function as EDHFs in arteries of many species. They mediate cyclooxygenase (COX)- and nitric oxide (NO)-independent relaxations to acetylcholine (ACh). However, the role of AA metabolites as relaxing factors in mouse arteries remains incompletely defined. ACh caused concentration-dependent relaxations of the mouse thoracic and abdominal aorta and carotid, femoral, and mesentery arteries (maximal relaxation: 57 ± 4%, 72 ± 4%, 82 ± 3%, 80 ± 3%, and 85 ± 3%, respectively). The NO synthase inhibitor nitro-L-arginine (L-NA; 30 μM) blocked relaxations in the thoracic aorta, and L-NA plus the COX inhibitor indomethacin (10 μM) inhibited relaxations in the abdominal aorta and carotid, femoral, and mesenteric arteries (maximal relaxation: 31 ± 10%, 33 ± 5%, 41 ± 8%, and 73 ± 3%, respectively). In mesenteric arteries, NO- and COX-independent relaxations to ACh were inhibited by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 10 μM) and BW-755C (200 μM), the K(+) channel inhibitor apamin (1 μM), and 60 mM KCl and eliminated by endothelium removal. They were not altered by the cytochrome P-450 inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (20 μM) or the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 μM). AA relaxations were attenuated by NDGA or apamin and eliminated by 60 mM KCl. Reverse-phase HPLC analysis revealed arterial [(14)C]AA metabolites that comigrated with prostaglandins, trihydroxyeicosatrienoic acids (THETAs), hydroxyepoxyeicosatrienoic acids (HEETAs), and hydroxyeicosatetraenoic acids (HETEs). Epoxyeicosatrienoic acids were not observed. Mass spectrometry confirmed the identity of 6-keto-PGF(1α), PGE(2), 12-HETE, 15-HETE, HEETAs, 11,12,15-THETA, and 11,14,15-THETA. AA metabolism was blocked by NDGA and endothelium removal. 11(R),12(S),15(S)-THETA relaxations (maximal relaxation: 73 ± 3%) were endothelium independent and blocked by 60 mM KCl. Western immunoblot analysis and RT-PCR of the aorta and mesenteric arteries demonstrated protein and mRNA expression of leukocyte-type 12/15-LO. Thus, in mouse resistance arteries, 12/15-LO AA metabolites mediate endothelium-dependent relaxations to ACh and AA.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Biosynthesis of 14,15-Hepoxilins in Human L1236 Hodgkin Lymphoma Cells and Eosinophils. Lipids 2010; 46:69-79. [DOI: 10.1007/s11745-010-3485-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
|
7
|
Lundström SL, D'Alexandri FL, Nithipatikom K, Haeggström JZ, Wheelock AM, Wheelock CE. HPLC/MS/MS-based approaches for detection and quantification of eicosanoids. Methods Mol Biol 2010; 579:161-87. [PMID: 19763475 DOI: 10.1007/978-1-60761-322-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.
Collapse
Affiliation(s)
- Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Chawengsub Y, Gauthier KM, Nithipatikom K, Hammock BD, Falck JR, Narsimhaswamy D, Campbell WB. Identification of 13-hydroxy-14,15-epoxyeicosatrienoic acid as an acid-stable endothelium-derived hyperpolarizing factor in rabbit arteries. J Biol Chem 2009; 284:31280-90. [PMID: 19737933 DOI: 10.1074/jbc.m109.025627] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arachidonic acid (AA) is metabolized by endothelial 15-lipoxygenase (15-LO) to several vasodilatory eicosanoids such as 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) and its proposed unstable precursor 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). In the present study, the acid-stable 13-hydroxy-trans-14,15-epoxy-eicosatrienoic acid (13-H-14,15-EETA) was identified and its vascular activities characterized. Rabbit aorta, mesenteric arteries, and the combination of 15-LO and cytochrome P450 2J2 converted AA to two distinct HEETA metabolites. The HEETA metabolites were resistant to acidic hydrolysis but were hydrolyzed by recombinant sEH to a more polar metabolite identified by mass spectrometry as 13,14,15-THETA. Mass spectrometric analyses and HPLC comigration identified the HEETAs as threo- and erythro-diastereomers of 13-H-trans-14,15-EETA. Erythro- and threo-diastereomers of 13-H-trans-14,15-EETA relaxed endothelium-denuded rabbit small mesenteric arteries with maximum relaxations of 22.6 +/- 6.0% and 8.6 +/- 4.3%, respectively. Apamin (10(-7) m) inhibited the relaxations to the erythro-isomer (maximum relaxation = 1.2 +/- 5.6%) and increasing [K(+)](o) from 4.6 to 30 mm blocked relaxations to both isomers. In cell-attached patches of mesenteric arterial smooth muscle cells (SMCs), erythro-13-H-trans-14,15-EETA (1-3 x 10(-6) m) increased mean open time of small conductance K(+) channels (13-14 pS) from 0.0007 +/- 0.0007 to 0.0053 +/- 0.0042. This activation was inhibited by apamin. The erythro, but not the threo, isomer blocked angiotensin II-stimulated aortic SMC migration. These studies demonstrate that 13-H-14,15-EETAs induces vascular relaxation via K(+) channel activation to cause SMC hyperpolarization. Thus, 13-H-14,15-EETA represents a new endothelial factor.
Collapse
Affiliation(s)
- Yuttana Chawengsub
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Chawengsub Y, Gauthier KM, Campbell WB. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 2009; 297:H495-507. [PMID: 19525377 DOI: 10.1152/ajpheart.00349.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of vascular endothelial cells with agonists such as acetylcholine (ACh) or bradykinin or with shear stress activates phospholipases and releases arachidonic acid (AA). AA is metabolized by cyclooxygenases, cytochrome P-450s, and lipoxygenases (LOs) to vasoactive products. In some arteries, a substantial component of the vasodilator response is dependent on LO metabolites of AA. Nitric oxide (NO)- and prostaglandin (PG)-independent vasodilatory responses to ACh and AA are reduced by inhibitors of LO and by antisense oligonucleotides specifically against 15-LO-1. Vasoactive 15-LO metabolites derived from the vascular endothelium include 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-HEETA) that is hydrolyzed by soluble epoxide hydrolase to 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). HEETA and THETA are endothelium-derived hyperpolarizing factors that induce vascular relaxations by activation of smooth muscle apamin-sensitive, calcium-activated, small-conductance K(+) channels causing hyperpolarization. In other arteries, the 12-LO metabolite 12-hydroxyeicosatetraenoic acid is synthesized by the vascular endothelium and relaxes smooth muscle by large-conductance, calcium-activated K(+) channel activation. Thus formation of vasodilator eicosanoids derived from LO pathways contributes to the regulation of vascular tone, local blood flow, and blood pressure.
Collapse
Affiliation(s)
- Yuttana Chawengsub
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
10
|
Aggarwal NT, Pfister SL, Gauthier KM, Chawengsub Y, Baker JE, Campbell WB. Chronic hypoxia enhances 15-lipoxygenase-mediated vasorelaxation in rabbit arteries. Am J Physiol Heart Circ Physiol 2008; 296:H678-88. [PMID: 19112096 DOI: 10.1152/ajpheart.00777.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
15-Lipoxygenase (15-LO-1) metabolizes arachidonic acid (AA) to 11,12,15-trihydroxyeicosatrienoic acids (THETAs) and 15-hydroxy-11,12-epoxyeicosatrienoic acids (HEETA) that dilate rabbit arteries. Increased endothelial 15-LO-1 expression enhances arterial relaxations to agonists. We tested the effect of hypoxia on 15-LO-1 expression, THETA and HEETA synthesis, and relaxations in rabbit arteries. The incubation of rabbit aortic endothelial cells and isolated aortas in 0.7% O(2) increased 15-LO-1 expression. Rabbits were housed in a hypoxic atmosphere of 12% O(2) for 5 days. 15-LO-1 expression increased in the endothelium of the arteries of rabbits in 12% O(2) compared with room air. THETA and HEETA synthesis was also enhanced in aortas and mesenteric arteries. AA hyperpolarized the smooth muscle cells in indomethacin- and phenylephrine-treated mesenteric arteries of hypoxic rabbits from -29.4 +/- 1 to -50.1 +/- 3 mV. The hyperpolarization to AA was less in arteries of normoxic rabbits (from -26.0 +/- 2 to -37 +/- 2 mV). This AA-induced hyperpolarization was inhibited by the 15-LO inhibitor BW-755C. Nitric oxide and prostaglandin-independent maximum relaxations to acetylcholine (79.7 +/- 2%) and AA (38.3 +/- 4%) were enhanced in mesenteric arteries from hypoxic rabbits compared with the normoxic rabbits (49.7 +/- 6% and 19.9 +/- 2%, respectively). These relaxations were inhibited by BW-755C and nordihydroguaiaretic acid. Therefore, hypoxia increased the relaxations to agonists in the rabbit mesenteric arteries by enhancing endothelial 15-LO-1 expression and synthesis of the hyperpolarizing factors THETA and HEETA.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dorado P, Cavaco I, Cáceres MC, Piedade R, Ribeiro V, Llerena A. Relationship between CYP2C8 genotypes and diclofenac 5-hydroxylation in healthy Spanish volunteers. Eur J Clin Pharmacol 2008; 64:967-70. [PMID: 18548238 DOI: 10.1007/s00228-008-0508-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
Abstract
PURPOSE CYP2C8 seems to be involved in diclofenac 5-hydroxylation, while, in vitro, the 4'-hydroxylation and 3'-hydroxylation seem to be mediated mainly by CYP2C9. We have demonstrated the relevance of CYP2C9 genotypes for diclofenac 4'-hydroxylation in healthy volunteers, so that the present study was aimed at analyzing the role of both CYP2C8 and CYP2C9 genotypes on diclofenac metabolism, as well as determining the CYP2C8 allele frequencies and their relationship with CYP2C9 variants. METHODS A group of 142 healthy white Spanish volunteers was studied. Previously, 102 of these subjects had been phenotyped with diclofenac and genotyped for CYP2C9. The CYP2C8 genotypes were determined by allele-specific PCR-RFLP methods. The urinary concentrations of diclofenac and its main metabolites were analysed using an HPLC-UV method after the administration of a single oral dose of diclofenac as described previously for part of the population studied here. RESULTS The diclofenac/5-hydroxydiclofenac urinary concentration ratio was higher in individuals carrying a CYP2C8*3 or CYP2C8*4 allele than in those homozygous for wild-type allele CYP2C8*1 (P < 0.05). Moreover, approximately 93% of the subjects with a CYP2C8*3 allele also carried a CYP2C9*2, and 80% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. In addition, the four CYP2C9*2/*2 individuals were CYP2C8*3/*3. CONCLUSIONS This is the first study showing the influence of CYP2C8 genotypes on diclofenac metabolism in vivo. The linkage disequilibrium between CYP2C8*3 and CYP2C9*2 alleles was confirmed in this Spanish population.
Collapse
Affiliation(s)
- P Dorado
- CICAB Extremadura University Hospital and Medical School, SES, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Schneider C, Boeglin WE, Yin H, Porter NA, Brash AR. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chem Res Toxicol 2008; 21:895-903. [PMID: 18324788 DOI: 10.1021/tx700357u] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the identification of novel epoxide products formed during the autoxidative transformation of 15 S-hydroxy- and 15 S-hydroperoxy-eicosatetra-5 Z,8 Z,11 Z,13 E-enoic acids (15 S-HETE and 15 S-HPETE). These epoxides account for about 20-30% of the polar compounds detected during the early stages of autoxidation. Their common structural features are retention of the original 15 S-hydroxy or 15 S-hydroperoxy moiety with epoxidation of the 11 Z or 13 E double bonds in the conjugated diene of the starting material. Four main epoxyalcohol isomers were characterized from the hydroxy fatty acid 15 S-HETE, comprising two pairs of diastereomers with either an 11,12- trans or 13,14- trans epoxide functionality. Four main epoxyhydroperoxides identified from 15 S-HPETE comprised two pairs with cis or trans epoxide configuration at the 11,12 position. To account for these transformations, we propose a mechanism involving peroxyl radical dependent dimerization or oligomerization of the fatty acid hydroxy or hydroperoxy derivatives into covalent intermediates resulting in intermolecular transfer of oxygen from the peroxyl radical to the epoxide group. Autoxidation of [ (18)O 2]-15 S-HPETE carrying an O-18 labeled hydroperoxide showed that the 11,12- cis epoxy oxygen of the epoxy-hydroperoxide product was enriched in the labeled oxygen, providing evidence that in part it was derived directly from the starting hydroperoxide and not from molecular oxygen. Thus, intermediate dimerization and possibly oligomerization of fatty acid peroxyl radicals provides a mechanism of epoxidation of fatty acid derivatives during lipid peroxidation and a potential route to other products including aldehydes formed via carbon chain cleavage.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt University,Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
13
|
Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI. Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J Biol Chem 2008; 283:10241-51. [PMID: 18263582 DOI: 10.1074/jbc.m709006200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE(-/-) mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard Harkewicz
- Department of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gauthier KM, Chawengsub Y, Goldman DH, Conrow RE, Anjaiah S, Falck JR, Campbell WB. 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid: an endothelium-derived 15-lipoxygenase metabolite that relaxes rabbit aorta. Am J Physiol Heart Circ Physiol 2008; 294:H1467-72. [PMID: 18203841 DOI: 10.1152/ajpheart.01052.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicate that 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA), an endothelium-derived hyperpolarizing factor in the rabbit aorta, mediates a portion of the relaxation response to acetylcholine by sequential metabolism of arachidonic acid by 15-lipoxygenase, hydroperoxide isomerase, and epoxide hydrolase. To determine the stereochemical configuration of the endothelial 11,12,15-THETA, its activity and chromatographic migration were compared with activity and migration of eight chemically synthesized stereoisomers of 11,12,15(S)-THETA. Of the eight isomers, only 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid comigrated with the biological 11,12,15-THETA on reverse- and normal-phase HPLC and gas chromatography. The same THETA isomer (10(-7)-10(-4) M) relaxed the rabbit aorta in a concentration-related manner (maximum relaxation = 69 +/- 5%). These relaxations were blocked by apamin (10(-7) M), an inhibitor of small-conductance Ca2+-activated K+ channels. In comparison, 11(S),12(R),15(S),5(Z),8(Z),13(E)-THETA (10(-4) M) relaxed the aorta by 22%. The other six stereoisomers were inactive in this assay. With use of the whole cell patch-clamp technique, it was shown that 10(-4) M 11(R),12(S),15(S),5(Z),8(Z),13(E)-THETA increased outward K+ current in isolated aortic smooth muscle cells by 119 +/- 36% at +60 mV, whereas 10(-4) M 11(R),12(R),15(S),5(Z),8(Z),13(E)-THETA increased outward K+ current by only 20 +/- 2%. The 11(R),12(S),15(S),5(Z),8(Z),13(E)-THETA-stimulated increase in K+ current was blocked by pretreatment with apamin. These studies suggest that 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid is the active stereoisomer produced by the rabbit aorta. It relaxes smooth muscle by activating K+ channels. The specific structural and stereochemical requirements for K+ channel activation suggest that a specific binding site or receptor of 11,12,15-THETA is involved in these actions.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chawengsub Y, Aggarwal NT, Nithipatikom K, Gauthier KM, Anjaiah S, Hammock BD, Falck JR, Campbell WB. Identification of 15-hydroxy-11,12-epoxyeicosatrienoic acid as a vasoactive 15-lipoxygenase metabolite in rabbit aorta. Am J Physiol Heart Circ Physiol 2008; 294:H1348-56. [PMID: 18192225 DOI: 10.1152/ajpheart.01326.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC. Mass spectrometric analyses identified 15-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Incubation of aortic incubates with methanol and acetic acid trapped the acid-sensitive 15-H-11,12-EETA as methoxydihydroxyeicosatrienoic acids (MDHEs) (367 m/z, M-H). Pretreatment of the aortic tissue with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA; 10(-6) M) increased the formation of 15-H-11,12-EETA, measured as MDHEs. Thus 15-H-11,12-EETA is an acid- and sEH-sensitive precursor of 11,12,15-THETA. Aortic homogenates and endothelial cells contain a 57-kDa protein corresponding to the rabbit sEH. In preconstricted aortic rings, AA (10(-7)-10(-4) M) and acetylcholine (10(-9)-10(-6) M) caused concentration-related relaxations that were enhanced by pretreatment with AUDA. These enhanced relaxations were inhibited by increasing extracellular [K(+)] from 4.8 to 20 mM. AA (3 x 10(-6) M) induced cell membrane hyperpolarization (from -31.0 +/- 1 to -46.8 +/- 2 mV) in aortic strips with an intact endothelium, which was enhanced by AUDA. These results indicate that 15-H-11,12-EETA is produced by the aorta, hydrolyzed by sEH to 11,12,15-THETA, and mediates relaxations by membrane hyperpolarization. 15-H-11,12-EETA represents an endothelium-derived hyperpolarizing factor.
Collapse
Affiliation(s)
- Yuttana Chawengsub
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The recent convergence of genetic and biochemical evidence on the activities of lipoxygenase (LOX) enzymes has implicated the production of hepoxilin derivatives (fatty acid epoxyalcohols) in the pathways leading to formation of the water-impermeable barrier of the outer epidermis. The enzymes 12R-LOX and eLOX3 are mutated in a rare form of congenital ichthyosis, and, in vitro, the two enzymes function together to convert arachidonic acid to a specific hepoxilin. Taken together, these lines of evidence suggest an involvement of these enzymes and their products in skin barrier function in all normal subjects. The natural occurrence of the specific hepoxilin products, and their biological role, whether structural or signaling, remain to be defined.
Collapse
Affiliation(s)
- Alan R Brash
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zheyong Yu
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Aggarwal NT, Holmes BB, Cui L, Viita H, Yla-Herttuala S, Campbell WB. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation. Am J Physiol Heart Circ Physiol 2006; 292:H1033-41. [PMID: 17040969 DOI: 10.1152/ajpheart.00624.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Arachidonate 15-Lipoxygenase/biosynthesis
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Endothelial Cells/metabolism
- Genetic Vectors
- Hydroxyeicosatetraenoic Acids/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Lipoxygenase Inhibitors/pharmacology
- Molecular Structure
- Rabbits
- Tandem Mass Spectrometry
- Transduction, Genetic
- Vasodilation/drug effects
- Vasodilator Agents/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
18
|
Manini P, Briganti S, Fabbri C, Picardo M, Napolitano A, d'Ischia M. Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway. Chem Phys Lipids 2006; 142:14-22. [PMID: 16581048 DOI: 10.1016/j.chemphyslip.2006.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/25/2022]
Abstract
The oxidation of (5Z,8Z,11Z,13E,15S)-15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-(S)-HETE, 1a) with the Fenton reagent (Fe2+/EDTA/H2O2) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with 75% substrate consumption after 1 h to give a mixture of products, one of which was identified as (2E,4S)-4-hydroxy-2-nonenal (3a, 18% yield). Methylation of the mixture with diazomethane allowed isolation of another main product which could be identified as methyl (5Z,8Z,13E)-11,12-trans-epoxy-15-hydroxy-5,8,13-eicosatrienoate (2a methyl ester, 8% yield). A similar oxidation carried out on (15-(2)H)-15-HETE (1b) indicated complete retention of the label in 2b methyl ester and 3b, consistent with an oxidation pathway involving as the primary event H-atom abstraction at C-10. Overall, these results support the recently proposed role of 1a as a potential precursor of the cytotoxic gamma-hydroxyalkenal 3a and disclose a hitherto unrecognized interconnection between 1a and the epoxy-alcohol 2a, previously implicated only in the metabolic transformations of the 15-hydroperoxy derivative of arachidonic acid.
Collapse
Affiliation(s)
- P Manini
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Lafite P, Dijols S, Buisson D, Macherey AC, Zeldin DC, Dansette PM, Mansuy D. Design and synthesis of selective, high-affinity inhibitors of human cytochrome P450 2J2. Bioorg Med Chem Lett 2006; 16:2777-80. [PMID: 16495056 PMCID: PMC1876728 DOI: 10.1016/j.bmcl.2006.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/18/2022]
Abstract
The active site topology, substrate specificity, and biological roles of the human cytochrome P450 CYP2J2, which is mainly expressed in the cardiovascular system, are poorly known even though recent data suggest that it could be a novel biomarker and potential target for therapy of human cancer. This paper reports a first series of high-affinity, selective CYP2J2 inhibitors that are related to terfenadine, with K(i) values as low as 160nM, that should be useful tools to determine the biological roles of CYP2J2.
Collapse
Affiliation(s)
- Pierre Lafite
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sylvie Dijols
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Didier Buisson
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Anne-Christine Macherey
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Darryl C. Zeldin
- NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Patrick M. Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
- * Corresponding author. Tel.: +33 (0)1 42 86 21 69; fax: +33 (0)1 42 86 83 87; e-mail:
| |
Collapse
|
20
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
21
|
Zhang DX, Gauthier KM, Chawengsub Y, Holmes BB, Campbell WB. Cyclooxygenase- and lipoxygenase-dependent relaxation to arachidonic acid in rabbit small mesenteric arteries. Am J Physiol Heart Circ Physiol 2005; 288:H302-9. [PMID: 15388505 DOI: 10.1152/ajpheart.00661.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10−9–10−4 M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 ± 0.5% and EC50 of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 μM), NS-398 (10 μM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 μM), nordihydroguaiaretic acid (NDGA; 1 μM), and ebselen (1 μM). HPLC analysis showed that [14C]AA was metabolized by mesenteric arteries to PGI2, PGE2, THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI2 and PGE2 was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI2, PGE2, and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K+ (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.
Collapse
Affiliation(s)
- David X Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
22
|
Falck JR, Barma DK, Mohapatra S, Bandyopadhyay A, Reddy KM, Qi J, Campbell WB. Asymmetric synthesis of the stereoisomers of 11,12,15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid, a potent endothelium-derived vasodilator. Bioorg Med Chem Lett 2004; 14:4987-90. [PMID: 15341965 DOI: 10.1016/j.bmcl.2004.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 07/07/2004] [Indexed: 02/02/2023]
Abstract
The four stereoisomers of the endothelial-derived vasorelaxant 11,12,15(S)-trihydroxyeicosatrienoic acid [1, 11,12,15(S)-THETA] were prepared by a triply convergent, asymmetric route that exploited the stereospecific, copper mediated cross-coupling of alpha,beta-dialkoxystannanes with organic electrophiles and the utility of dialkylthionocarbamates as orthogonal alcohol protective groups. Only 11(R),12(S),15(S)-THETA was comparable to natural material by HPLC, GC/MS, and in vitro bioassay.
Collapse
Affiliation(s)
- J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA.
| | | | | | | | | | | | | |
Collapse
|