1
|
Ding W, Lu Q, Fan L, Yin M, Xiao T, Guo X, Zhang L, Wang X. Correlation of Taste Components with Consumer Preferences and Emotions in Chinese Mitten Crabs ( Eriocheir sinensis): The Use of Artificial Neural Network Model. Foods 2022; 11:foods11244106. [PMID: 36553846 PMCID: PMC9777666 DOI: 10.3390/foods11244106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
This study took a consumer sensory perspective to investigate the relationship between taste components and consumers’ preferences and emotions. Abdomen meat (M), hepatopancreas (H), and gonads (G) of Chinese mitten crabs, one from Chongming, the Jianghai 21 variety (C-JH), and two from Taixing, the Jianghai 21 (T-JH) and Yangtze II varieties (T-CJ), were used to evaluate flavor quality. The results indicated that in the abdomen meat, differences in taste components were mainly shown in the content of sweet amino acids, bitter amino acids, K+, and Ca2+; M-C-JH had the highest EUC value of 9.01 g/100 g. In the hepatopancreas, bitter amino acids were all significantly higher in H-C-JH (569.52 mg/100 g) than in the other groups (p < 0.05). In the gonads, the umami amino acid content was significantly higher in G-T-JH than in the other groups (p < 0.05) (EUC values: G-T-JH > G-C-JH > G-T-CJ). Consumer sensory responses showed that different edible parts of the crab evoked different emotions, with crab meat being closely associated with positive emotions and more complex emotional expressions for the hepatopancreas and gonads. In comparison, consumers were more emotionally positive when consuming Yangtze II crab. H-C-JH evoked negative emotions due to high bitter taste intensities. Multifactor analysis (MFA) showed arginine, alanine, glycine, proline, K+, and Ca2+ were found to have a positive correlation with consumer preference; an artificial neural network model with three neurons was built with good correlation (R2 = 0.98). This study can provide a theoretical foundation for the breeding of Chinese mitten crabs, new insights into the river crab industry, and the consumer market.
Collapse
Affiliation(s)
- Wei Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Qi Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Licheng Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Tong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Xueqian Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Correspondence:
| |
Collapse
|
2
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
3
|
Sasabe J, Suzuki M. Emerging Role of D-Amino Acid Metabolism in the Innate Defense. Front Microbiol 2018; 9:933. [PMID: 29867842 PMCID: PMC5954117 DOI: 10.3389/fmicb.2018.00933] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO) in mammals. At host-microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host-microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host-microbe interface to modulate bacterial colonization and host defense.
Collapse
Affiliation(s)
- Jumpei Sasabe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Suzuki
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Mar Drugs 2015; 13:7403-18. [PMID: 26694422 PMCID: PMC4699246 DOI: 10.3390/md13127073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.
Collapse
Affiliation(s)
- Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
5
|
Takahashi S, Abe K, Kera Y. Bacterial d-amino acid oxidases: Recent findings and future perspectives. Bioengineered 2015; 6:237-41. [PMID: 25996186 DOI: 10.1080/21655979.2015.1052917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
D-Amino acid oxidase (DAO) is a flavin enzyme that catalyzes the oxidative deamination of d-amino acids. This enzyme has been studied extensively both biochemically and structurally as a model for the oxidase-dehydrogenase class of flavoproteins. This enzyme also has various applications, such as the determination of d-amino acids and production of building blocks for a number of pharmaceuticals. DAO has been found mainly in eukaryotic organisms and has been suggested to play a significant role in various cellular processes, one of which includes neurotransmission in the human brain. In contrast, this enzyme has not been identified in prokaryotic organisms. Some studies have recently identified and characterized DAO enzyme in some actinobacteria. In addition, a genome database search reveals a wide distribution of DAO homologous genes in this bacterial group. The bacterial DAOs characterized so far have certain distinct properties in comparison to eukaryotic DAOs. These enzymes also exhibit some important applicable properties, suggesting that bacteria could be used as a source for obtaining novel and useful DAOs. The physiological function of bacterial DAO have been proposed to include the degradation of non-canonical d-amino acids released from cell wall, but is still largely unknown and need to be studied in depth.
Collapse
Affiliation(s)
- Shouji Takahashi
- a Department of Bioengineering ; Nagaoka University of Technology ; Nagaoka , Niigata , Japan
| | | | | |
Collapse
|
6
|
Takahashi S, Okada H, Abe K, Kera Y. Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814110040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Saito Y, Takahashi S, Kobayashi M, Abe K, Kera Y. D-Amino acid oxidase of Streptomyces coelicolor and the effect of D-amino acids on the bacterium. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
8
|
D-amino acid-induced expression of D-amino acid oxidase in the yeast Schizosaccharomyces pombe. Curr Microbiol 2012; 65:764-9. [PMID: 22986818 DOI: 10.1007/s00284-012-0227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
We investigated D-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E. coli displayed oxidase activity to neutral and basic D-amino acids, but not to an L-amino acid or acidic D-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without D-amino acid, and was approximately doubled by adding D-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. L-Alanine also induced the activity, but only by about half of that induced by D-alanine. The induction by D-alanine reached a maximum level at 2 h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was D-alanine, followed by D-proline and then D-serine. Not effective were N-carbamoyl-D,L-alanine (a better inducer of DAO than D-alanine in the yeast Trigonopsis variabilis), and both basic and acidic D-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.
Collapse
|
9
|
Tsay HJ, Wang YH, Chen WL, Huang MY, Chen YH. Treatment with sodium benzoate leads to malformation of zebrafish larvae. Neurotoxicol Teratol 2007; 29:562-9. [PMID: 17644306 DOI: 10.1016/j.ntt.2007.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 04/11/2007] [Accepted: 05/28/2007] [Indexed: 11/17/2022]
Abstract
Sodium benzoate (SB) is a commonly used food preservative and anti-microbial agent in many foods from soup to cereals. However, little is known about the SB-induced toxicity and teratogenicity during early embryonic development. Here, we used zebrafish as a model to test the toxicity and teratogenicity because of their transparent eggs; therefore, the organogenesis of zebrafish embryos is easy to observe. After low dosages of SB (1-1000 ppm) treatment, the zebrafish embryos exhibited a 100% survival rate. As the exposure dosages increased, the survival rates decreased. No embryos survived after treatment with 2000 ppm SB. The 50% lethal dose (LD(50)) of zebrafish is found to be in the range of 1400-1500 ppm. Gut abnormalities, malformation of pronephros, defective hatching gland and edema in pericardial sac were observed after treatment with SB. Compared to untreated littermates (vehicle-treated control), SB-treated embryos exhibited significantly reduced tactile sensitivity frequencies of touch-induced movement (vehicle-treated control: 27.60+/-1.98 v.s. 1000 ppm SB: 7.89+/-5.28; N=30). Subtle changes are easily observed by staining with specific monoclonal antibodies F59, Znp1 and alpha6F to detect morphology changes in muscle fibers, motor axons and pronephros, respectively. Our data showed that the treatment of SB led to misalignment of muscle fibers, motor neuron innervations, excess acetyl-choline receptor cluster and defective pronephric tubes. On the basis of these observations, we suggest that sodium benzoate is able to induce neurotoxicity and nephrotoxicity of zebrafish larvae.
Collapse
Affiliation(s)
- Huey-Jen Tsay
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Katane M, Seida Y, Sekine M, Furuchi T, Homma H. Caenorhabditis eleganshas two genes encoding functionald-aspartate oxidases. FEBS J 2006; 274:137-49. [PMID: 17140416 DOI: 10.1111/j.1742-4658.2006.05571.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four cDNA clones that were annotated in the database as encoding d-amino acid oxidase (DAAO) or d-aspartate oxidase (DASPO) were isolated by RT-PCR from Caenorhabditis elegans RNA. The proteins (Y69Ap, C47Ap, F18Ep, and F20Hp) encoded by the cloned cDNAs were expressed in Escherichia coli as recombinant proteins with an N-terminal His-tag. All proteins except F20Hp were recovered in the soluble fractions. The recombinant Y69Ap has functional DAAO activity, as it can deaminate neutral and basic d-amino acids, whereas the recombinants C47Ap and F18Ep have functional DASPO activities, as they can deaminate acidic d-amino acids. Additional experiments using purified recombinant proteins revealed that Y69Ap deaminates d-Arg more efficiently than d-Ala and d-Met, and that C47Ap and F18Ep show distinct kinetic properties against d-Asp, d-Glu, and N-methyl-d-Asp. This is the first time that cDNA cloning of invertebrate DAAO and DASPO genes has been reported. In addition, our study reveals for the first time that C. elegans has at least two genes encoding functional DASPOs and one gene encoding DAAO, although it had previously been thought that organisms only bear one copy each of these genes. The two C. elegans DASPOs differ in their substrate specificities and possibly also in their subcellular localization.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
11
|
Sarower MG, Okada S, Abe H. Catalytic and structural characteristics of carp hepatopancreas D-amino acid oxidase expressed in Escherichia coli. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:417-25. [PMID: 15694590 DOI: 10.1016/j.cbpc.2004.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 11/28/2022]
Abstract
D-amino acid oxidase of carp (Cyprinus carpio) hepatopancreas was overexpressed in Escherichia coli cells and purified to homogeneity for the first time in animal tissues other than pig kidney. The purified preparation had a specific activity of 293 units mg(-1) protein toward D-alanine as a substrate. It showed the highest activity toward D-alanine with a low Km of 0.23 mM and a high kcat of 190 s(-1) compared to 10 s(-1) of the pig kidney enzyme. Nonpolar and polar uncharged D-amino acids were preferable substrates to negatively or positively charged amino acids. The enzyme exhibited better thermal and pH stabilities than several yeast counterparts or the pig kidney enzyme. Secondary structure topology consisted of 11 alpha-helices and 17 beta-strands that differed slightly from pig kidney and Rhodotorula gracilis enzymes. A three-dimensional model of the carp enzyme constructed from a deduced amino acid sequence resembled that of pig kidney D-amino acid oxidase but with a shorter active site loop and a longer C-terminal loop. Judging from these characteristics, carp D-amino acid oxidase is close to the pig kidney enzyme structurally, but analogous to the R. gracilis enzyme enzymatically in turnover rate and pH and temperature stabilities.
Collapse
Affiliation(s)
- Mohammed Golam Sarower
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
12
|
D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/pl00021754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Abe H, Yoshikawa N, Sarower MG, Okada S. Physiological Function and Metabolism of Free D-Alanine in Aquatic Animals. Biol Pharm Bull 2005; 28:1571-7. [PMID: 16141518 DOI: 10.1248/bpb.28.1571] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquatic crustaceans and some bivalve mollusks contain a large amount of free D-alanine (up to 100 mumol/g wet wt.) in their tissues. Under high salinity stress, crustaceans and bivalve mollusks largely accumulate D- and L-alanine irrespective of species examined, together with L-glutamine, L-proline, and glycine of which increases are species dependent. These data indicate that D-alanine is one of the major compatible osmolytes responsible for the intracellular isosmotic regulation in the tissues of crustaceans and bivalves. Alanine racemase has been proven to catalyze the interconversion of D- and L-alanine in these invertebrates. The enzyme has been isolated to homogeneity from the muscle of black tiger prawn Penaeus monodon and its cDNA has been cloned from the muscle and hepatopancreas of kuruma prawn Penaeus japonicus for the first time in eukaryotes other than yeast. Several fish species fed on crustaceans and mollusks contain D-amino acid and D-aspartate oxidases that catalyze the decomposition of D-amino acids. A cDNA of D-amino acid oxidase has been cloned from the hepatopancreas of omnivorous common carp Cyprinus carpio. During oral administration of free D-alanine to carp, the activity and mRNA of D-amino acid oxidase increased rapidly in hepatopancreas and the increases were highest in intestine followed by hepatopancreas and kidney. These data suggest that D-amino acid oxidase is inducible in carp and an important enzyme responsible for the efficient utilization of carbon skeleton of D-alanine in their feeds.
Collapse
Affiliation(s)
- Hiroki Abe
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0050-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|