1
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Petkova-Kirova P, Baas S, Wagenpfeil G, Hartz P, Unger MM, Bernhardt R. SNPs in cytochrome P450 genes decide on the fate of individuals with genetic predisposition to Parkinson's disease. Front Pharmacol 2023; 14:1244516. [PMID: 37601072 PMCID: PMC10436510 DOI: 10.3389/fphar.2023.1244516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease. To elucidate factors leading to the manifestation of PD we compared the occurrence of single nucleotide polymorphisms (SNPs) in various cytochrome P450 (P450) genes in people with a genetic predisposition and suffering from PD (GPD) to that of people, who are genetically predisposed, but show no symptoms of the disease (GUN). We used the PPMI (Parkinson's Progression Markers Initiative) database and the gene sequences of all 57 P450s as well as their three redox partners. Corresponding odds ratios (OR) and confidence intervals (CI) were calculated to assess the incidence of the various SNPs in the two groups of individuals and consequently their relation to PD. We identified for the first time SNPs that are significantly (up to 10fold!) over- or under-represented in GPD patients compared to GUN. SNPs with OR > 5 were found in 10 P450s being involved in eicosanoid, vitamin A and D metabolism as well as cholesterol degradation pointing to an important role of endogenous factors for the manifestation of PD clinical symptoms. Moreover, 12 P450s belonging to all P450 substrate classes as well as POR have SNPs that are significantly under-represented (OR < 0.2) in GPD compared to GUN, indicating a protective role of those SNPs and the corresponding P450s regarding disease advancement. To the best of our knowledge our data for the first time demonstrate an association between known PD predisposition genes and SNPs in other genes, shown here for different P450 genes and for their redox partner POR, which promote the manifestation of the disease in familial PD. Our results thus shed light onto the pathogenesis of PD, especially the switch from GUN to GPD and might further help to advance novel strategies for preventing the development or progression of the disease.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
3
|
Heterologous Expression of Recombinant Human Cytochrome P450 (CYP) in Escherichia coli: N-Terminal Modification, Expression, Isolation, Purification, and Reconstitution. BIOTECH 2023; 12:biotech12010017. [PMID: 36810444 PMCID: PMC9944785 DOI: 10.3390/biotech12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.
Collapse
|
4
|
D MO, C TZ, R SP. Human orphan cytochromes P450: An update. Curr Drug Metab 2022; 23:CDM-EPUB-128186. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Molina-Ortiz D
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Torres-Zárate C
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Santes-Palacios R
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| |
Collapse
|
5
|
Mo HY, Wei QY, Zhong QH, Zhao XY, Guo D, Han J, Noracharttiyapot W, Visser L, van den Berg A, Xu YM, Lau ATY. Cytochrome P450 27C1 Level Dictates Lung Cancer Tumorigenicity and Sensitivity towards Multiple Anticancer Agents and Its Potential Interplay with the IGF-1R/Akt/p53 Signaling Pathway. Int J Mol Sci 2022; 23:7853. [PMID: 35887201 PMCID: PMC9324654 DOI: 10.3390/ijms23147853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 enzymes (CYP450s) exert mighty catalytic actions in cellular metabolism and detoxication, which play pivotal roles in cell fate determination. Preliminary data shows differential expression levels of CYP27C1, one of the "orphan P450s" in human lung cancer cell lines. Here, we study the functions of CYP27C1 in lung cancer progression and drug endurance, and explore its potential to be a diagnostic and therapeutic target for lung cancer management. Quantitative real-time PCR and immunoblot assays were conducted to estimate the transcription and protein expression level of CYP27C1 in human lung cancer cell lines, which was relatively higher in A549 and H1975 cells, but was lower in H460 cells. Stable CYP27C1-knockdown A549 and H1975 cell lines were established, in which these cells showed enhancement in cell proliferation, colony formation, and migration. In addition, aberrant IGF-1R/Akt/p53 signal transduction was also detected in stable CYP27C1-knockdown human lung cancer cells, which exhibited greater tolerance towards the treatments of anticancer agents (including vinorelbine, picropodophyllin, pacritinib, and SKLB610). This work, for the first time, reveals that CYP27C1 impacts lung cancer cell development by participating in the regulation of the IGF-1R/Akt/p53 signaling pathway, and the level of CYP27C1 plays indispensable roles in dictating the cellular sensitivity towards multiple anticancer agents.
Collapse
Affiliation(s)
- Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jin Han
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wachiraporn Noracharttiyapot
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Glass SM, Webb SN, Guengerich FP. Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin. Arch Biochem Biophys 2021; 714:109076. [PMID: 34732331 DOI: 10.1016/j.abb.2021.109076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023]
Abstract
Of the 57 human cytochrome P450 (P450) enzymes, seven are mitochondrial: 11A1, 11B1, 11B2, 24A1, 27A1, 27B1, and 27C1. Mitochondrial P450s utilize an electron transport system with adrenodoxin (Adx) and NADPH-adrenodoxin reductase (AdR). AdR reduces Adx, which then transfers electrons to the P450. The interactions between proteins in the mitochondrial P450 system are largely driven by electrostatic interactions, though the specifics vary depending on the P450. Unlike other mitochondrial P450s, the interaction between P450 27C1, a retinoid 3,4-desaturase expressed in the skin, and Adx remains largely uncharacterized. In this work, we utilized an Alexa Fluor 488 C5 maleimide-labeled Adx to measure binding affinities between Adx and P450 27C1 or AdR. Both proteins bound Adx tightly, with Kd values < 100 nM, and binding affinities decreased with increasing ionic strength, supporting the role of electrostatic interactions in mediating these interactions. Cross-linking mass spectrometry and computational modeling were performed to identify interactions between P450 27C1 and Adx. While the residues of Adx identified in interactions were consistent with studies of other mitochondrial P450s, the binding interface of P450 27C1 was quite large and supported multiple Adx binding positions, including ones outside of the canonical Adx binding site. Additionally, Adx did not appear to be an allosteric effector of P450 27C1 substrate binding, in contrast to some other mitochondrial P450s. Overall, we conclude that P450-Adx interactions are P450-specific.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
7
|
Cellular retinoid-binding proteins transfer retinoids to human cytochrome P450 27C1 for desaturation. J Biol Chem 2021; 297:101142. [PMID: 34480899 PMCID: PMC8511960 DOI: 10.1016/j.jbc.2021.101142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Cytochrome P450 27C1 (P450 27C1) is a retinoid desaturase expressed in the skin that catalyzes the formation of 3,4-dehydroretinoids from all-trans retinoids. Within the skin, retinoids are important regulators of proliferation and differentiation. In vivo, retinoids are bound to cellular retinol-binding proteins (CRBPs) and cellular retinoic acid–binding proteins (CRABPs). Interaction with these binding proteins is a defining characteristic of physiologically relevant enzymes in retinoid metabolism. Previous studies that characterized the catalytic activity of human P450 27C1 utilized a reconstituted in vitro system with free retinoids. However, it was unknown whether P450 27C1 could directly interact with holo-retinoid-binding proteins to receive all-trans retinoid substrates. To assess this, steady-state kinetic assays were conducted with free all-trans retinoids and holo-CRBP-1, holo-CRABP-1, and holo-CRABP-2. For holo-CRBP-1 and holo-CRABP-2, the kcat/Km values either decreased 5-fold or were equal to the respective free retinoid values. The kcat/Km value for holo-CRABP-1, however, decreased ∼65-fold in comparison with reactions with free all-trans retinoic acid. These results suggest that P450 27C1 directly accepts all-trans retinol and retinaldehyde from CRBP-1 and all-trans retinoic acid from CRABP-2, but not from CRABP-1. A difference in substrate channeling between CRABP-1 and CRABP-2 was also supported by isotope dilution experiments. Analysis of retinoid transfer from holo-CRABPs to P450 27C1 suggests that the decrease in kcat observed in steady-state kinetic assays is due to retinoid transfer becoming rate-limiting in the P450 27C1 catalytic cycle. Overall, these results illustrate that, like the CYP26 enzymes involved in retinoic acid metabolism, P450 27C1 interacts with cellular retinoid-binding proteins.
Collapse
|
8
|
Child SA, Reddish MJ, Glass SM, Goldfarb MH, Barckhausen IR, Guengerich FP. Functional interactions of adrenodoxin with several human mitochondrial cytochrome P450 enzymes. Arch Biochem Biophys 2020; 694:108596. [PMID: 32980349 DOI: 10.1016/j.abb.2020.108596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022]
Abstract
Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 μM Adx, and higher concentrations were not inhibitory up to at least 50 μM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.
Collapse
Affiliation(s)
- Stella A Child
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Sarah M Glass
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Margo H Goldfarb
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Ian R Barckhausen
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
9
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Nakagawa K, Tsugawa N, Hirota Y, Tanaka K, Yamashita S, Ikushiro S, Suda T, Okano T, Sakaki T. Generation of 1,25-dihydroxyvitamin D 3 in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D 3 rescued their rachitic phenotypes. J Steroid Biochem Mol Biol 2019; 185:71-79. [PMID: 30031146 DOI: 10.1016/j.jsbmb.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 μg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Abe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi, Osaka 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kazuma Tanaka
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shigeaki Yamashita
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
10
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
11
|
Kramlinger VM, Nagy LD, Fujiwara R, Johnson KM, Phan TTN, Xiao Y, Enright JM, Toomey MB, Corbo JC, Guengerich FP. Human cytochrome P450 27C1 catalyzes 3,4-desaturation of retinoids. FEBS Lett 2016; 590:1304-12. [PMID: 27059013 DOI: 10.1002/1873-3468.12167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 11/05/2022]
Abstract
In humans, a considerable fraction of the retinoid pool in skin is derived from vitamin A2 (all-trans 3,4-dehydroretinal). Vitamin A2 may be locally generated by keratinocytes, which can convert vitamin A1 (all-trans retinol) into vitamin A2 in cell culture. We report that human cytochrome P450 (hP450) 27C1, a previously 'orphan' enzyme, can catalyze this reaction. Purified recombinant hP450 27C1 bound and desaturated all-trans retinol, retinal, and retinoic acid, as well as 11-cis-retinal. Although the physiological role of 3,4-dehydroretinoids in humans is unclear, we have identified hP450 27C1 as an enzyme capable of efficiently mediating their formation.
Collapse
Affiliation(s)
- Valerie M Kramlinger
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Leslie D Nagy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rina Fujiwara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yi Xiao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
12
|
Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, How MJ, Johnson SL, Roberts NW, Kefalov VJ, Guengerich FP, Corbo JC. Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2. Curr Biol 2015; 25:3048-57. [PMID: 26549260 PMCID: PMC4910640 DOI: 10.1016/j.cub.2015.10.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown. Here, we show that a cytochrome P450 family member, Cyp27c1, mediates this switch by converting vitamin A1 (the precursor of 11-cis retinal) into vitamin A2 (the precursor of 11-cis 3,4-didehydroretinal). Knockout of cyp27c1 in zebrafish abrogates production of vitamin A2, eliminating the animal's ability to red-shift its photoreceptor spectral sensitivity and reducing its ability to see and respond to near-infrared light. Thus, the expression of a single enzyme mediates dynamic spectral tuning of the entire visual system by controlling the balance of vitamin A1 and A2 in the eye.
Collapse
Affiliation(s)
- Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-ya Sato
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelby E Temple
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - James R Allen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rina Fujiwara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Valerie M Kramlinger
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie D Nagy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yi Xiao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Ronchi CL, Sbiera S, Volante M, Steinhauer S, Scott-Wild V, Altieri B, Kroiss M, Bala M, Papotti M, Deutschbein T, Terzolo M, Fassnacht M, Allolio B. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma. PLoS One 2014; 9:e105855. [PMID: 25144458 PMCID: PMC4140842 DOI: 10.1371/journal.pone.0105855] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/26/2014] [Indexed: 12/24/2022] Open
Abstract
Background Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins. Objective To investigate the CYP2W1 expression in adrenal samples and its relationship with clinical outcome in ACC. Material and Methods CYP2W1 expression was investigated by qRT-PCR in 13 normal adrenal glands, 32 ACA, 25 ACC, and 9 different non-adrenal normal tissue samples and by immunohistochemistry in 352 specimens (23 normal adrenal glands, 33 ACA, 239 ACC, 67 non-adrenal normal or neoplastic samples). Results CYP2W1 mRNA expression was absent/low in normal non-adrenal tissues, but high in normal and neoplastic adrenal glands (all P<0.01 vs non-adrenal normal tissues). Accordingly, CYP2W1 immunoreactivity was absent/low (H-score 0–1) in 72% of non-adrenal normal tissues, but high (H-score 2–3) in 44% of non-adrenal cancers, in 65% of normal adrenal glands, in 62% of ACAs and in 50% of ACCs (all P<0.001 vs non-adrenal normal tissues), being significantly increased in steroid-secreting compared to non-secreting tumors. In ACC patients treated with mitotane only, high CYP2W1 immunoreactivity adjusted for ENSAT stage was associated with longer overall survival and time to progression (P<0.05 and P<0.01, respectively), and with a better response to therapy both as palliative (response/stable disease in 42% vs 6%, P<0.01) or adjuvant option (absence of disease recurrence in 69% vs 45%, P<0.01). Conclusion CYP2W1 is highly expressed in both normal and neoplastic adrenal glands making it a promising tool for targeted therapy in ACC. Furthermore, CYP2W1 may represent a new predictive marker for the response to mitotane treatment.
Collapse
Affiliation(s)
- Cristina L. Ronchi
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Silviu Sbiera
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Marco Volante
- Department of Oncology, University of Turin, San Luigi Hospital, Turin, Italy
| | - Sonja Steinhauer
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | | | - Barbara Altieri
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Kroiss
- Comprehensive Cancer Center Mainfranken, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Margarita Bala
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Mauro Papotti
- Department of Oncology, University of Turin, San Luigi Hospital, Turin, Italy
| | - Timo Deutschbein
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Massimo Terzolo
- Division of Internal Medicine I, University of Turin, San Luigi Hospital, Turin, Italy
| | - Martin Fassnacht
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Bruno Allolio
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
14
|
Choi JY, Eoff RL, Pence MG, Wang J, Martin MV, Kim EJ, Folkmann LM, Guengerich FP. Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication. J Biol Chem 2011; 286:31180-93. [PMID: 21784862 DOI: 10.1074/jbc.m111.258038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hyperthermophilic crenarchaeon Sulfolobus solfataricus P2 encodes three B-family DNA polymerase genes, B1 (Dpo1), B2 (Dpo2), and B3 (Dpo3), and one Y-family DNA polymerase gene, Dpo4, which are related to eukaryotic counterparts. Both mRNAs and proteins of all four DNA polymerases were constitutively expressed in all growth phases. Dpo2 and Dpo3 possessed very low DNA polymerase and 3' to 5' exonuclease activities in vitro. Steady-state kinetic efficiencies (k(cat)/K(m)) for correct nucleotide insertion by Dpo2 and Dpo3 were several orders of magnitude less than Dpo1 and Dpo4. Both the accessory proteins proliferating cell nuclear antigen and the clamp loader replication factor C facilitated DNA synthesis with Dpo3, as with Dpo1 and Dpo4, but very weakly with Dpo2. DNA synthesis by Dpo2 and Dpo3 was remarkably decreased by single-stranded binding protein, in contrast to Dpo1 and Dpo4. DNA synthesis in the presence of proliferating cell nuclear antigen, replication factor C, and single-stranded binding protein was most processive with Dpo1, whereas DNA lesion bypass was most effective with Dpo4. Both Dpo2 and Dpo3, but not Dpo1, bypassed hypoxanthine and 8-oxoguanine. Dpo2 and Dpo3 bypassed uracil and cis-syn cyclobutane thymine dimer, respectively. High concentrations of Dpo2 or Dpo3 did not attenuate DNA synthesis by Dpo1 or Dpo4. We conclude that Dpo2 and Dpo3 are much less functional and more thermolabile than Dpo1 and Dpo4 in vitro but have bypass activities across hypoxanthine, 8-oxoguanine, and either uracil or cis-syn cyclobutane thymine dimer, suggesting their catalytically limited roles in translesion DNA synthesis past deaminated, oxidized base lesions and/or UV-induced damage.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Guengerich FP, Cheng Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 2011; 63:684-99. [PMID: 21737533 DOI: 10.1124/pr.110.003525] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a result of technical advances in recombinant DNA technology and nucleotide sequencing, entire genome sequences have become available in the past decade and offer potential in understanding diseases. However, a central problem in the biochemical sciences is that the functions of only a fraction of the genes/proteins are known, and this is also an issue in pharmacology. This review is focused on issues related to the functions of cytochrome P450 (P450) enzymes. P450 functions can be categorized in several groups: 1) Some P450s have critical roles in the metabolism of endogenous substrates (e.g., sterols and fat-soluble vitamins). 2) Some P450s are not generally critical to normal physiology but function in relatively nonselective protection from the many xenobiotic chemicals to which mammals (including humans) are exposed in their diets [as well as more anthropomorphic chemicals (e.g., drugs, pesticides)]. 3) Some P450s have not been extensively studied and are termed "orphans" here. With regard to elucidation of any physiological functions of the orphan P450s, the major subject of this review, it is clear that simple trial-and-error approaches with individual substrate candidates will not be very productive in addressing questions about function. A series of liquid chromatography/mass spectrometry/informatics approaches are discussed, along with some successes with both human and bacterial P450s. Current information on what are still considered "orphan" P450s is presented. The potential for application of some of these approaches to other enzyme systems is also discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
16
|
Guengerich FP, Tang Z, Salamanca-Pinzón SG, Cheng Q. Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 2010; 10:153-63. [PMID: 20539034 PMCID: PMC2895278 DOI: 10.1124/mi.10.3.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the rapid completion of genomic sequences of organisms today, we have far more gene products than functions we can ascribe. A number of experimental strategies have been developed and applied, both in vitro and in vivo, to put functions to these orphan proteins. The "deorphanization" of human and Streptomyces cytochrome P450 enzymes is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics. The myriad of possibilities is too enormous to screen one reaction at a time, thus metabolomic or proteomic screens with complex biological samples are promising current strategies.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
17
|
Guengerich FP, Tang Z, Cheng Q, Salamanca-Pinzón SG. Approaches to deorphanization of human and microbial cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:139-45. [PMID: 20493973 DOI: 10.1016/j.bbapap.2010.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/30/2010] [Accepted: 05/09/2010] [Indexed: 12/30/2022]
Abstract
One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One fourth of the human P450s are not well-characterized and therefore considered "orphans." A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
18
|
Tang Z, Salamanca-Pinzón SG, Wu ZL, Xiao Y, Guengerich FP. Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. Arch Biochem Biophys 2010; 494:86-93. [PMID: 19932081 PMCID: PMC2812615 DOI: 10.1016/j.abb.2009.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 (P450) 4F11 is still considered an "orphan" because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing approximately 230nmol P450 from a 3-l culture of Escherichia coli. P450 4F11 was purified and utilized for untargeted substrate searches in human liver extract using a liquid chromatography/mass spectrometry-based metabolomic and isotopic labeling approach (Tang et al., 2009 [19]). Four fatty acids-palmitic, oleic, arachidonic, and docosahexaenoic-were identified in human liver and verified as substrates of P450 4F11. The products were characterized as omega-hydroxylated fatty acids by gas chromatography-mass spectrometry analysis of their trimethylsilyl derivatives. Kinetic analysis of the oxidation products confirmed that the fatty acids are substrates oxidized by P450 4F11. P450 4F11 also exhibited low activity for some drug N-demethylation reactions but none for activation of several pro-carcinogens.
Collapse
Affiliation(s)
- Zhongmei Tang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Sandra Giovanna Salamanca-Pinzón
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | | - Yi Xiao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
19
|
Wu ZL, Qiao J, Zhang ZG, Guengerich FP, Liu Y, Pei XQ. Enhanced bacterial expression of several mammalian cytochrome P450s by codon optimization and chaperone coexpression. Biotechnol Lett 2009; 31:1589-93. [PMID: 19557307 DOI: 10.1007/s10529-009-0059-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/16/2022]
Abstract
To elucidate the effects of codon optimization and chaperone coexpression on the heterologous expression of mammalian cytochrome P450s (P450) in Escherichia coli, the expression of P450s 2B1, 2S1, 2U1, 2W1, and 27C1 were investigated. With codon optimization for N-terminus or the entire gene, the expression levels of P450 27C1, 2U1 and 2W1 increased 22-fold, 3.6-fold and 2.1-fold, respectively, while those for P450s 2B1 and 2S1 remained unchanged. With coexpression of E. coli molecular chaperones GroEL/ES, the expression level increased up to 14-fold for P450 27C1, and 3- to 5-fold for P450s 2B1, 2S1, and 2W1. Simultaneous application of these two techniques resulted in synergetic effects.
Collapse
Affiliation(s)
- Zhong-Liu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, 610041, Chengdu, China.
| | | | | | | | | | | |
Collapse
|
20
|
Loecken EM, Dasari S, Hill S, Tabb DL, Guengerich FP. The bis-electrophile diepoxybutane cross-links DNA to human histones but does not result in enhanced mutagenesis in recombinant systems. Chem Res Toxicol 2009; 22:1069-76. [PMID: 19364102 PMCID: PMC2696559 DOI: 10.1021/tx900037u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,2-Dibromoethane and 1,3-butadiene are cancer suspects present in the environment and have been used widely in industry. The mutagenic properties of 1,2-dibromoethane and the 1,3-butadiene oxidation product diepoxybutane are thought to be related to the bis-electrophilic character of these chemicals. The discovery that overexpression of O(6)-alkylguanine alkyltransferase (AGT) enhances bis-electrophile-induced mutagenesis prompted a search for other proteins that may act by a similar mechanism. A human liver screen for nuclear proteins that cross-link with DNA in the presence of 1,2-dibromoethane identified histones H2b and H3 as candidate proteins. Treatment of isolated histones H2b and H3 with diepoxybutane resulted in DNA-protein cross-links and produced protein adducts, and DNA-histone H2b cross-links were identified (immunochemically) in Escherichia coli cells expressing histone H2b. However, heterologous expression of histone H2b in E. coli failed to enhance bis-electrophile-induced mutagenesis. These results are similar to those found with the cross-link candidate glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [ Loecken , E. M. and Guengerich , F. P. ( 2008 ) Chem. Res. Toxicol. 21 , 453 - 458 ], but in contrast to GAPDH, histone H2b bound DNA with even higher affinity than AGT. The extent of DNA cross-linking of isolated histone H2b was similar to that of AGT, suggesting that differences in postcross-linking events explain the difference in mutagenesis.
Collapse
Affiliation(s)
| | | | - Salisha Hill
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232−0146 and Department of Biomedical Informatics, and the Proteomics Laboratory of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - F. Peter Guengerich
- Address correspondence to: Prof. F. Peter Guengerich Department of Biochemistry and Center in Molecular Toxicology Vanderbilt University School of Medicine 638 Robinson Research Building 2200 Pierce Avenue Nashville, Tennessee 37232−0146 Telephone: (615) 322−2261 FAX: (615) 322−3141 E-mail:
| |
Collapse
|
21
|
Abstract
Of the 57 human cytochromes P450 (P450) and 58 pseudogenes discovered to date, (http://drnelson.utmem.edu/CytochromeP450.html ), 1/4 still remain "orphans" in the sense that their function, expression sites, and regulation are still largely not elucidated. The post-human genome-sequencing project era has presented the research community with novel challenges. Despite many insights gathered about gene location and genetic variations in our human genome, we still lack important knowledge about these novel P450 enzymes and their functions in endogenous and exogenous metabolism, as well as their possible roles in the metabolism of toxicants and carcinogens. Our own list of such orphans currently consists of 13 members: P450 2A7, 2S1, 2U1, 2W1, 3A43, 4A22, 4F11, 4F22, 4V2, 4X1, 4Z1, 20A1, and 27C1. Some of the orphans, e.g. P450s 2W1 and 2U1, already have putative assigned functions in arachidonic acid metabolism and may activate carcinogens. However, at this point, for the majority of them more knowledge is available about their genes and single nucleotide polymorphisms than of their biological functions. It is noteworthy that most P450 orphans express high interspecies sequence conservation and have orthologs in rodents (e.g. CYP4X1/Cyp4x1, CYP4V2/Cyp4v3). This review summarizes recent knowledge about the P450 orphans and questions remaining about their specific roles in human metabolism.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
22
|
Stark K, Dostalek M, Guengerich FP. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J 2008; 275:3706-17. [PMID: 18549450 DOI: 10.1111/j.1742-4658.2008.06518.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 (P450) 4X1 is one of the so-called 'orphan' P450s without an assigned biological function. Codon-optimized P450 4X1 and a number of N-terminal modified sequences were expressed in Escherichia coli. Native P450 4X1 showed a characteristic P450 spectrum but low expression in E. coli DH5alpha cells (< 100 nmol P450.L(-1)). The highest level of expression (300-450 nmol P450.L(-1) culture) was achieved with a bicistronic P450 4X1 construct (N-terminal MAKKTSSKGKL, change of E2A, amino acids 3-44 truncated). Anandamide (arachidonoyl ethanolamide) has emerged as an important signaling molecule in the neurovascular cascade. Recombinant P450 4X1 protein, co-expressed with human NADPH-P450 reductase in E. coli, was found to convert the natural endocannabinoid anandamide to a single monooxygenated product, 14,15-epoxyeicosatrienoic (EET) ethanolamide. A stable anandamide analog (CD-25) was also converted to a monooxygenated product. Arachidonic acid was oxidized more slowly to 14,15- and 8,9-EETs but only in the presence of cytochrome b(5). Other fatty acids were investigated as putative substrates but showed only little or minor oxidation. Real-time PCR analysis demonstrated extrahepatic mRNA expression, including several human brain structures (cerebellum, amygdala and basal ganglia), in addition to expression in human heart, liver, prostate and breast. The highest mRNA expression levels were detected in amygdala and skin. The ability of P450 4X1 to generate anandamide derivatives and the mRNA distribution pattern suggest a potential role for P450 4X1 in anandamide signaling in the brain.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|
23
|
Stark K, Wu ZL, Bartleson CJ, Guengerich FP. mRNA distribution and heterologous expression of orphan cytochrome P450 20A1. Drug Metab Dispos 2008; 36:1930-7. [PMID: 18541694 DOI: 10.1124/dmd.108.022020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (P450) 20A1 is one of the so-called "orphan" P450s without assigned biological function. mRNA expression was detected in human liver, and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3- to 4-fold higher in brain and heart than in liver. In situ hybridization of rat whole brain sections showed an mRNA expression pattern similar to that observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200-280 nmol of P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
24
|
Loecken EM, Guengerich FP. Reactions of glyceraldehyde 3-phosphate dehydrogenase sulfhydryl groups with bis-electrophiles produce DNA-protein cross-links but not mutations. Chem Res Toxicol 2007; 21:453-8. [PMID: 18163542 DOI: 10.1021/tx7003618] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The environmental contaminant 1,2-dibromoethane and diepoxybutane, an oxidation product of the important industrial chemical butadiene, are bis-functional electrophiles and are known to be mutagenic and carcinogenic. One mechanism by which bis-electrophiles can exert their toxic effects is through the induction of genotoxic and mutagenic DNA-peptide cross-links. This mechanism has been shown in systems overexpressing the DNA repair protein O6 -alkylguanine DNA-alkyltransferase (AGT) or glutathione S-transferase and involves reactions with nucleophilic cysteine residues. The hypothesis that DNA-protein cross-link formation is a more general mechanism for genotoxicity by bis-electrophiles was investigated by screening nuclear proteins for reactivity with model monofunctional electrophiles. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was identified as a candidate because of the nucleophilicity of two cysteine residues (Cys152 and Cys246) in reaction screens with model electrophiles (Dennehy, M. K. et al. (2006) Chem. Res. Toxicol. 19, 20-29). Incubation of GAPDH with bis-electrophiles resulted in inhibition of its catalytic activity, but only at high concentrations of diepoxybutane. In vitro assays indicated DNA-GAPDH cross-link formation in the presence of diepoxybutane, and bis-electrophile reactivity at Cys246 was confirmed using mass spectral analysis. In contrast to AGT, overexpression of human GAPDH in Escherichia coli did not enhance mutagenesis by diepoxybutane. We propose that the lack of mutational enhancement is in part due to the inherently lower reactivity of GAPDH toward bis-electrophiles as well as the reduced DNA binding ability relative to AGT, preventing the in vivo formation of DNA-protein cross-links and enhanced mutagenesis.
Collapse
Affiliation(s)
- Elisabeth M Loecken
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
26
|
Kim DH, Kim KH, Isin EM, Guengerich FP, Chae HZ, Ahn T, Yun CH. Heterologous expression and characterization of wild-type human cytochrome P450 1A2 without conventional N-terminal modification in Escherichia coli. Protein Expr Purif 2007; 57:188-200. [PMID: 18032064 DOI: 10.1016/j.pep.2007.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/05/2007] [Accepted: 10/11/2007] [Indexed: 11/24/2022]
Abstract
In this study, wild-type human CYP1A2 without the conventional N-terminal modification (second codon GCT) or the truncation of the N-terminal hydrophobic region was functionally expressed in Escherichia coli. Its enzymatic properties were compared with N-terminally modified CYP1A2. Although modified CYP1A2 is almost all high-spin, some wild-type CYP1A2 shifted to low-spin. Spectral binding titrations with several ligands could be performed with wild-type enzyme, but not with modified enzyme. Kinetic parameters for several substrates were similar for the two CYP1A2 enzymes. However, the oxidation rates of phenacetin by modified enzyme were approximately 2-fold higher than those by wild-type enzyme. The intermolecular isotope effects were approximately 2 for phenacetin O-deethylation catalyzed by both enzymes. However, the wild-type enzyme, but not the modified enzyme, increased C-hydroxylation when O-deethylation rates were lowered by deuterium substitution. Molecular switching indicates that phenacetin rotates within the active site of wild-type enzyme and suggests a looser conformation in the active site of the wild-type enzyme than of the modified enzyme. These results reveal that the overall enzymatic properties of wild-type CYP1A2 enzyme are quite similar to those of modified CYP1A2, although its active site environment seems to differ from that of the modified enzyme.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001; 21:70-83. [PMID: 11409933 DOI: 10.1021/tx700079z] [Citation(s) in RCA: 1086] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome P450 (P450) enzymes catalyze a variety of reactions and convert chemicals to potentially reactive products as well as make compounds less toxic. Most of the P450 reactions are oxidations. The majority of these can be rationalized in the context of an FeO(3+) intermediate and odd electron abstraction/rebound mechanisms; however, other iron-oxygen complexes are possible and alternate chemistries can be considered. Another issue regarding P450-catalyzed reactions is the delineation of rate-limiting steps in the catalytic cycle and the contribution to reaction selectivity. In addition to the rather classical oxidations, P450s also catalyze less generally discussed reactions including reduction, desaturation, ester cleavage, ring expansion, ring formation, aldehyde scission, dehydration, ipso attack, one-electron oxidation, coupling reactions, rearrangement of fatty acid and prostaglandin hydroperoxides, and phospholipase activity. Most of these reactions are rationalized in the context of high-valent iron-oxygen intermediates and Fe(2+) reductions, but others are not and may involve acid-base catalysis. Some of these transformations are involved in the bioactivation and detoxication of xenobiotic chemicals.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|