1
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
2
|
Peterson E, Shippee E, Brinton MA, Kaur P. Biochemical characterization of the mouse ABCF3 protein, a partner of the flavivirus-resistance protein OAS1B. J Biol Chem 2019; 294:14937-14952. [PMID: 31413116 DOI: 10.1074/jbc.ra119.008477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Indexed: 11/06/2022] Open
Abstract
Mammalian ATP-binding cassette (ABC) subfamily F member 3 (ABCF3) is a class 2 ABC protein that has previously been identified as a partner of the mouse flavivirus resistance protein 2',5'-oligoadenylate synthetase 1B (OAS1B). The functions and natural substrates of ABCF3 are not known. In this study, analysis of purified ABCF3 showed that it is an active ATPase, and binding analyses with a fluorescent ATP analog suggested unequal contributions by the two nucleotide-binding domains. We further showed that ABCF3 activity is increased by lipids, including sphingosine, sphingomyelin, platelet-activating factor, and lysophosphatidylcholine. However, cholesterol inhibited ABCF3 activity, whereas alkyl ether lipids either inhibited or resulted in a biphasic response, suggesting small changes in lipid structure differentially affect ABCF3 activity. Point mutations in the two nucleotide-binding domains of ABCF3 affected sphingosine-stimulated ATPase activity differently, further supporting different roles for the two catalytic pockets. We propose a model in which pocket 1 is the site of basal catalysis, whereas pocket 2 engages in ligand-stimulated ATP hydrolysis. Co-localization of the ABCF3-OAS1B complex to the virus-remodeled endoplasmic reticulum membrane has been shown before. We also noted that co-expression of ABCF3 and OAS1B in bacteria alleviated growth inhibition caused by expression of OAS1B alone, and ABCF3 significantly enhanced OAS1B levels, indirectly showing interaction between these two proteins in bacterial cells. As viral RNA synthesis requires large amounts of ATP, we conclude that lipid-stimulated ATP hydrolysis may contribute to the reduction in viral RNA production characteristic of the flavivirus resistance phenotype.
Collapse
Affiliation(s)
| | - Emma Shippee
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
3
|
Rahman SJ, Kaur P. Conformational changes in a multidrug resistance ABC transporter DrrAB: Fluorescence-based approaches to study substrate binding. Arch Biochem Biophys 2018; 658:31-45. [PMID: 30243711 DOI: 10.1016/j.abb.2018.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023]
Abstract
Bacterial multidrug transporter DrrAB exhibits overlapping substrate specificity with mammalian P-glycoprotein. DrrA hydrolyzes ATP, and the energy is transduced to carrier DrrB resulting in export of drugs. Previous studies suggested that DrrB contains a large and flexible drug-binding pocket made of aromatic residues contributed by several transmembrane helices with different drugs binding to both specific and shared residues in this pocket. However, direct binding of drugs to DrrAB or the mechanism of substrate-induced conformational changes between DrrA and DrrB has so far not been investigated. We used two fluorescence-based approaches to determine substrate binding to purified DrrAB. Our analysis shows that DrrB binds drugs with variable affinities and contains multiple drug binding sites. This work also provides evidence for two asymmetric nucleotide binding sites in DrrA with strikingly different binding affinities. Using targeted fluorescence labeling, we provide clear evidence of long-range conformational changes occurring between DrrA and DrrB. It is proposed that the transduction pathway from the nucleotide-binding DrrA subunit to the substrate binding DrrB subunit includes Q-loop and CREEM motifs in DrrA and EAA-like motif in DrrB. This study lays a solid groundwork for examining roles of various conserved regions of DrrA and DrrB in transduction of conformational changes.
Collapse
Affiliation(s)
- Sadia J Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States.
| |
Collapse
|
4
|
Song ES, Jang H, Guo HF, Juliano MA, Juliano L, Morris AJ, Galperin E, Rodgers DW, Hersh LB. Inositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes. Proc Natl Acad Sci U S A 2017; 114:E2826-E2835. [PMID: 28325868 PMCID: PMC5389272 DOI: 10.1073/pnas.1613447114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid β peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, Brazil
| | - Andrew J Morris
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536;
- Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536;
- Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
5
|
Han X, Huang Y, Zhang R, Xiao S, Zhu S, Qin N, Hong Z, Wei L, Feng J, Ren Y, Feng L, Wan J. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 165:155-160. [PMID: 27137358 DOI: 10.1016/j.saa.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/13/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - San Xiao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaihuan Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nian Qin
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiangtao Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
6
|
Mansuri MS, Babuta M, Ali MS, Bharadwaj R, Deep jhingan G, Gourinath S, Bhattacharya S, Bhattacharya A. Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis. Sci Rep 2016; 6:16969. [PMID: 26739245 PMCID: PMC4703981 DOI: 10.1038/srep16969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by multiple mechanisms including phosphorylation of G-actin. Biochemical analysis showed that EhAK1 is a serine/threonine kinase with broad ion specificity and undergoes multiple trans-autophosphorylation. Three autophosphorylation sites were identified by mass spectrometry. Out of these Thr279 appears to be involved in both autophosphorylation as well as substrate phosphorylation. Over expression of the mutant Thr279A inhibited erythrophagocytosis showing dominant negative phenotype. Multiple alignments of different kinases including alpha kinases displayed conserved binding sites that are thought to be important for function of the protein. Mutation studies demonstrated the importance of some of these binding sites in kinase activity. Binding studies with fluorescent-ATP analogs supported our prediction regarding ATP binding site based on sequence alignment. In conclusion, EhAK1 has multiple regulatory features and enrichment of EhAK1 at the site of phagocytosis stimulates trans-autophosphorylation reaction that increases kinase activity resulting in enhanced actin dynamics and phagocytosis. Some of the properties of EhAK1 are similar to that seen in alpha kinases.
Collapse
Affiliation(s)
- M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Sabir Ali
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Bharadwaj
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Nandi SK, Chakraborty A, Panda AK, Sinha Ray S, Kar RK, Bhunia A, Biswas A. Interaction of ATP with a small heat shock protein from Mycobacterium leprae: effect on its structure and function. PLoS Negl Trop Dis 2015; 9:e0003661. [PMID: 25811190 PMCID: PMC4374918 DOI: 10.1371/journal.pntd.0003661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
Adenosine-5'-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of "HSP18-ATP" interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.
Collapse
Affiliation(s)
- Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | | | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- * E-mail:
| |
Collapse
|
8
|
da Cruz CHB, Seabra G. Molecular dynamics simulations reveal a novel mechanism for ATP inhibition of insulin degrading enzyme. J Chem Inf Model 2014; 54:1380-90. [PMID: 24697863 DOI: 10.1021/ci400695m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of brain levels of the Amyloid-β 42 (Aβ42) polypeptide by IDE has recently been linked with possible routes for new therapies against Alzheimer's disease (AD). One important aspect is the regulatory mechanism of IDE by ATP, which is an IDE activator in degrading small peptides and an inhibitor in degrading larger peptides, such as Aβ42. This relationship was investigated in this study. We present molecular dynamics simulations of Aβ42 complexed with IDE, in the absence or presence of either ATP or excess Na(+) and Cl(-) ions. Results suggest a previously unreported inhibition mechanism that depends on charge-induced structural modifications in the active site and interactions simultaneously involving ATP, Aβ42, and IDE. Such interactions exist only when both ATP and Aβ42 are simultaneously present in the catalytic chamber. This mechanism results in allosteric, noncompetitive inhibition with apparent decrease of substrate affinity, in accordance with experiment.
Collapse
Affiliation(s)
- Carlos H B da Cruz
- Departamento de Química Fundamental, Universidade Federal de Pernambuco , Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, Recife-PE Brazil , 50.740-560
| | | |
Collapse
|
9
|
Gao D, Bian X, Guo M, Wang J, Zhang X. Identification and characterization of the biochemical function of Agrobacterium T-complex-recruiting protein Atu5117. FEBS J 2013; 280:4865-75. [PMID: 23902381 DOI: 10.1111/febs.12460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023]
Abstract
Atu5117 from Agrobacterium tumefaciens is a highly conserved protein with a putative nucleotidyltransferase domain in its N-terminal region and a putative higher eukaryotes and prokaryotes nucleotide-binding domain in its C-terminal region. This protein has been shown to be a T-complex-recruiting protein that can recruit T-complex from the cytosol to the polar VirB/D4 type IV secretion system (T4SS). However, the biochemical function of Atu5117 is still unknown. Here, we show that Atu5117 is a (d)NTPase. Although no proteins with nucleotidyltransferase and higher eukaryotes and prokaryotes nucleotide-binding domains were identified as (d)NTPases, Atu5117 was able to convert all eight canonical NTPs and dNTPs to NDP, dNDP and inorganic phosphate in vitro, and required Mg(2+) for its (d)NTPase activity. The kinetic parameters of Atu5117 (d)NTPase for eight substrates were characterized. Kinetic data showed that Atu5117 (d)NTPase preferred ATP as its substrate. The optimal conditions for (d)NTPase activity of Atu5117 were very similar to those required for Agrobacterium tumorigenesis. The kinetic parameters of (d)NTPase of Atu5117 for all four canonical NTPs were in the same orders of magnitude as the kinetic parameters of the ATPases identified in some components of the VirB/D4 T4SS. These results suggest that Atu5117 might function as an energizer to recruit T-complex to the T4SS transport site.
Collapse
Affiliation(s)
- Diankun Gao
- College of Bioscience and Biotechnology, Yangzhou University, China
| | | | | | | | | |
Collapse
|
10
|
Ma LS, Narberhaus F, Lai EM. IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem 2012; 287:15610-21. [PMID: 22393043 PMCID: PMC3346141 DOI: 10.1074/jbc.m111.301630] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The type VI secretion system (T6SS) with diversified functions is widely distributed in pathogenic Proteobacteria. The IcmF (intracellular multiplication protein F) family protein TssM is a conserved T6SS inner membrane protein. Despite the conservation of its Walker A nucleotide-binding motif, the NTPase activity of TssM and its role in T6SS remain obscure. In this study, we characterized TssM in the plant pathogen Agrobacterium tumefaciens and provided the first biochemical evidence for TssM exhibiting ATPase activity to power the secretion of the T6SS hallmark protein, hemolysin-coregulated protein (Hcp). Amino acid substitutions in the Walker A motif of TssM caused reduced ATP binding and hydrolysis activity. Importantly, we discovered the Walker B motif of TssM and demonstrated that it is critical for ATP hydrolysis activity. Protein-protein interaction studies and protease susceptibility assays indicated that TssM undergoes an ATP binding-induced conformational change and that subsequent ATP hydrolysis is crucial for recruiting Hcp to interact with the periplasmic domain of the TssM-interacting protein TssL (an IcmH/DotU family protein) into a ternary complex and mediating Hcp secretion. Our findings strongly argue that TssM functions as a T6SS energizer to recruit Hcp into the TssM-TssL inner membrane complex prior to Hcp secretion across the outer membrane.
Collapse
Affiliation(s)
- Lay-Sun Ma
- Institute of Plant and Microbial Biology and the Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
11
|
Somlata, Kamanna S, Agrahari M, Babuta M, Bhattacharya S, Bhattacharya A. Autophosphorylation of Ser428 of EhC2PK plays a critical role in regulating erythrophagocytosis in the parasite Entamoeba histolytica. J Biol Chem 2012; 287:10844-52. [PMID: 22753771 DOI: 10.1074/jbc.m111.308874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn(2+)-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KDΔC) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KDΔC proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.
Collapse
Affiliation(s)
- Somlata
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | | | |
Collapse
|
12
|
Noinaj N, Song ES, Bhasin S, Alper BJ, Schmidt WK, Hersh LB, Rodgers DW. Anion activation site of insulin-degrading enzyme. J Biol Chem 2011; 287:48-57. [PMID: 22049080 DOI: 10.1074/jbc.m111.264614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin-degrading enzyme (IDE) (insulysin) is a zinc metallopeptidase that metabolizes several bioactive peptides, including insulin and the amyloid β peptide. IDE is an unusual metallopeptidase in that it is allosterically activated by both small peptides and anions, such as ATP. Here, we report that the ATP-binding site is located on a portion of the substrate binding chamber wall arising largely from domain 4 of the four-domain IDE. Two variants having residues in this site mutated, IDEK898A,K899A,S901A and IDER429S, both show greatly decreased activation by the polyphosphate anions ATP and PPPi. IDEK898A,K899A,S901A is also deficient in activation by small peptides, suggesting a possible mechanistic link between the two types of allosteric activation. Sodium chloride at high concentrations can also activate IDE. There are no observable differences in average conformation between the IDE-ATP complex and unliganded IDE, but regions of the active site and C-terminal domain do show increased crystallographic thermal factors in the complex, suggesting an effect on dynamics. Activation by ATP is shown to be independent of the ATP hydrolysis activity reported for the enzyme. We also report that IDEK898A,K899A,S901A has reduced intracellular function relative to unmodified IDE, consistent with a possible role for anion activation of IDE activity in vivo. Together, the data suggest a model in which the binding of anions activates by reducing the electrostatic attraction between the two halves of the enzyme, shifting the partitioning between open and closed conformations of IDE toward the open form.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Eun Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Sonia Bhasin
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Benjamin J Alper
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536.
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
13
|
Noinaj N, Bhasin SK, Song ES, Scoggin KE, Juliano MA, Juliano L, Hersh LB, Rodgers DW. Identification of the allosteric regulatory site of insulysin. PLoS One 2011; 6:e20864. [PMID: 21731629 PMCID: PMC3123307 DOI: 10.1371/journal.pone.0020864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/14/2011] [Indexed: 11/29/2022] Open
Abstract
Background Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. Principal Findings The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Conclusions/Significance Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sonia K. Bhasin
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Suk Song
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kirsten E. Scoggin
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Maria A. Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - David W. Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
Song ES, Rodgers DW, Hersh LB. Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism. J Biol Chem 2011; 286:13852-8. [PMID: 21343292 DOI: 10.1074/jbc.m110.191668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-degrading enzyme (IDE) exists primarily as a dimer being unique among the zinc metalloproteases in that it exhibits allosteric kinetics with small synthetic peptide substrates. In addition the IDE reaction rate is increased by small peptides that bind to a distal site within the substrate binding site. We have generated mixed dimers of IDE in which one or both subunits contain mutations that affect activity. The mutation Y609F in the distal part of the substrate binding site of the active subunit blocks allosteric activation regardless of the activity of the other subunit. This effect shows that substrate or small peptide activation occurs through a cis effect. A mixed dimer composed of one wild-type subunit and the other subunit containing a mutation that neither permits substrate binding nor catalysis (H112Q) exhibits the same turnover number per active subunit as wild-type IDE. In contrast, a mixed dimer in which one subunit contains the wild-type sequence and the other contains a mutation that permits substrate binding, but not catalysis (E111F), exhibits a decrease in turnover number. This indicates a negative trans effect of substrate binding at the active site. On the other hand, activation in trans is observed with extended substrates that occupy both the active and distal sites. Comparison of the binding of an amyloid β peptide analog to wild-type IDE and to the Y609F mutant showed no difference in affinity, indicating that Y609 does not play a significant role in substrate binding at the distal site.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
15
|
Sengupta S, Ganguly A, Roy A, Bosedasgupta S, D'Annessa I, Desideri A, Majumder HK. ATP independent type IB topoisomerase of Leishmania donovani is stimulated by ATP: an insight into the functional mechanism. Nucleic Acids Res 2010; 39:3295-309. [PMID: 21186185 PMCID: PMC3082896 DOI: 10.1093/nar/gkq1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most type IB topoisomerases do not require ATP and Mg(2+) for activity. However, as shown previously for vaccinia topoisomerase I, we demonstrate that ATP stimulates the relaxation activity of the unusual heterodimeric type IB topoisomerase from Leishmania donovani (LdTOP1L/S) in the absence of Mg(2+). The stimulation is independent of ATP hydrolysis but requires salt as a co-activator. ATP binds to LdTOP1L/S and increases its rate of strand rotation. Docking studies indicate that the amino acid residues His93, Tyr95, Arg188 and Arg190 of the large subunit may be involved in ATP binding. Site directed mutagenesis of these four residues individually to alanine and subsequent relaxation assays reveal that the R190A mutant topoisomerase is unable to exhibit ATP-mediated stimulation in the absence of Mg(2+). However, the ATP-independent relaxation activities of all the four mutant enzymes remain unaffected. Additionally, we provide evidence that ATP binds LdTOP1L/S and modulates the activity of the otherwise ATP-independent enzyme. This study establishes ATP as an activator of LdTOP1L/S in the absence of Mg(2+).
Collapse
Affiliation(s)
- Souvik Sengupta
- Molecular Parasitology Laboratory, Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Song ES, Rodgers DW, Hersh LB. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties. PLoS One 2010; 5:e9719. [PMID: 20300529 PMCID: PMC2838795 DOI: 10.1371/journal.pone.0009719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insulin degrading enzyme (IDE) is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - David W. Rodgers
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chavali VRM, Madhurantakam C, Ghorai S, Roy S, Das AK, Ghosh AK. Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. Virology 2008; 377:7-18. [PMID: 18486179 DOI: 10.1016/j.virol.2008.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 11/30/2022]
Abstract
The genome segment 6 (S6) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus was converted into cDNA, cloned and sequenced. S6 consisted of 1944 nucleotides with an ORF of 607 amino acids and could encode a protein of 68 kDa, termed P68. Motif scan and molecular docking analysis of P68 showed the presence of two cystathionine beta synthase (CBS) domains and ATP binding sites. The ORF of AmCPV S6 was expressed in E. coli as His-tag fusion protein and polyclonal antibody was raised. Immunoblot analysis of virus infected gut cells and purified polyhedra using raised anti-p68 polyclonal antibody showed that S6 encodes a viral structural protein. Fluorescence and ATPase assay of soluble P68 produced in Sf-9 cells via baculovirus expression system showed its ability to bind and cleave ATP. These results suggest that P68 may bind viral RNA through CBS domains and help in replication and transcription through ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Venkata R M Chavali
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, West Bengal, India
| | | | | | | | | | | |
Collapse
|
18
|
Huet Y, Strassner J, Schaller A. Cloning, expression and characterization of insulin-degrading enzyme from tomato (Solanum lycopersicum). Biol Chem 2008; 389:91-8. [PMID: 18095874 DOI: 10.1515/bc.2008.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems.
Collapse
Affiliation(s)
- Yoann Huet
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
19
|
Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun CY, Meredith SC, Sisodia SS, Leissring MA, Tang WJ. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J Biol Chem 2007; 282:25453-63. [PMID: 17613531 DOI: 10.1074/jbc.m701590200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid-beta (Abeta) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substrate-bound human 113-kDa IDE reveals that the N- and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that Abeta is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in Vmax with only minimal changes to Km. Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.
Collapse
Affiliation(s)
- Hookang Im
- Ben-May Department for Cancer Research, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|