1
|
Gonzalez-Viedma A, Van Dyck R, De Beule J, Ghesquière B, Jochmans I. Unraveling metabolism during kidney perfusion using tracer studies, a systematic review. Artif Organs 2022; 46:2118-2134. [PMID: 35848397 DOI: 10.1111/aor.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 07/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Understanding kidney metabolism during perfusion is vital to further develop the technology as a preservation, viability assessment, and resuscitation platform. We reviewed the evidence on the use of labeled metabolites (tracers) to understand "on-pump" kidney behavior. METHODS PubMed, Embase, Web of Science, and Cochrane databases were systematically searched for studies evaluating metabolism of (non)radioactively labeled endogenous compounds during kidney perfusion. RESULTS Of 5899 articles, 30 were included. All were animal studies [rat (70%), dog (13%), pig (10%), rabbit (7%)] perfusing but not transplanting kidneys. Perfusion took place at hypothermic (4-12°C) (20%), normothermic (35-40°C) (77%), or undefined temperatures (3%). Hypothermic perfusion used albumin or a clinical kidney preservation solution, mostly in the presence of oxygen. Normothermic perfusion was mostly performed with oxygenated crystalloids often containing glucose and amino acids with unclear partial oxygen tensions. Active metabolism of carbohydrate, amino acid, lipids, and large molecules was shown in hypothermic and normothermic perfusion. Production of macromolecules, such as prostaglandin, thromboxane, and vitamin D, takes place during normothermic perfusion. No experiments compared differences in metabolic activity between hypothermic and normothermic perfusion. One conference abstract showed increased anaerobic metabolism in kidneys donated after circulatory death by adding labeled glucose to hypothermically perfused human kidneys. CONCLUSIONS Tracer studies during kidney perfusion contribute to unraveling kidney metabolic behavior in pre-clinical models. Whether findings are truly translational needs further investigation in large animal models of human kidneys. Furthermore, it is essential to better understand how ischemia changes this metabolic behavior.
Collapse
Affiliation(s)
- Arantxa Gonzalez-Viedma
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Robbe Van Dyck
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Julie De Beule
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yu OB, Webb DA, Di Milo ES, Mutchie TR, Teske KA, Chen T, Lin W, Peluso-Iltis C, Rochel N, Helmstädter M, Merk D, Arnold LA. Biological evaluation and synthesis of calcitroic acid. Bioorg Chem 2021; 116:105310. [PMID: 34482171 DOI: 10.1016/j.bioorg.2021.105310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
We describe the synthesis and broad profiling of calcitroic acid (CTA) as vitamin D receptor (VDR) ligand. The x-ray co-crystal structure of the Danio Rerio VDR ligand binding domain in complex with CTA and peptide MED1 confirmed an agonistic conformation of the receptor. CTA adopted a similar conformation as 1,25(OH)2D3 in the binding pocket. A hydrogen bond with His333 and a water molecule were observed in the binding pocket, which was accommodated due to the shorter CTA side chain. In contrast, 1,25(OH)2D3 interacted with His423 and His333 due to its longer side chain. In vitro, the EC50 values of CTA and CTA-ME for VDR-mediated transcription were 2.89 µM and 0.66 µM, respectively, confirming both compounds as VDR agonists. CTA was further evaluated for interaction with fourteen nuclear receptors demonstrating selective activation of VDR. VDR mediated gene regulation by CTA in intestinal cells was observed for the VDR target gene CYP24A1. CTA at 10 µM upregulated CYP24A1 with similar efficacy as 1,25(OH)2D3 at 20 nM and 100-fold stronger compared to lithocholic acid at 10 µM. CTA reduced the transcription of iNOS and IL-1β in interferon γ and lipopolysaccharide stimulated mouse macrophages resulting in a reduction of nitric oxide production and secretion of IL-1β. These observed anti-inflammatory properties of 20 µM CTA were similar to 20 nM 1,25(OH)2D3.
Collapse
Affiliation(s)
- Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Daniel A Webb
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Elliot S Di Milo
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Tania R Mutchie
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Kelly A Teske
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258/CNRS, UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258/CNRS, UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA.
| |
Collapse
|
3
|
Metabolic Fate of Human Immunoactive Sterols in Mycobacterium tuberculosis. J Mol Biol 2020; 433:166763. [PMID: 33359098 DOI: 10.1016/j.jmb.2020.166763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 - the most potent among them - can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.
Collapse
|
4
|
Abstract
Vitamin D is essential for bone health and is known to be involved in immunomodulation and cell proliferation. Vitamin D status remains a significant health issue worldwide. However, there has been no clear consensus on vitamin D deficiency and its measurement in serum, and clinical practice of vitamin D deficiency treatment remains inconsistent. The major circulating metabolite of vitamin D, 25-hydroxyvitamin D (25(OH)D), is widely used as a biomarker of vitamin D status. Other metabolic pathways are recognised as important to vitamin D function and measurement of other metabolites may become important in the future. The utility of free 25(OH)D rather than total 25(OH)D needs further assessment. Data used to estimate the vitamin D intake required to achieve a serum 25(OH)D concentration were drawn from individual studies which reported dose-response data. The studies differ in their choice of subjects, dose of vitamin D, frequency of dosing regimen and methods used for the measurement of 25(OH)D concentration. Baseline 25(OH)D, body mass index, ethnicity, type of vitamin D (D2 or D3) and genetics affect the response of serum 25(OH)D to vitamin D supplementation. The diversity of opinions that exist on this topic are reflected in the guidelines. Government and scientific societies have published their recommendations for vitamin D intake which vary from 400-1000 IU/d (10-25 μg/d) for an average adult. It was not possible to establish a range of serum 25(OH)D concentrations associated with selected non-musculoskeletal health outcomes. To recommend treatment targets, future studies need to be on infants, children, pregnant and lactating women.
Collapse
|
5
|
Yu OB, Mutchie TR, Di Milo ES, Arnold LA. Synthesis and biological evaluation of calcioic acid. Steroids 2020; 154:108536. [PMID: 31704333 PMCID: PMC6980330 DOI: 10.1016/j.steroids.2019.108536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/30/2022]
Abstract
Herein, we describe the synthesis of calcioic acid following a recently developed synthetic strategy for calcitroic acid. Several improvements to reaction conditions were made, which resulted in higher yields. The improved workup and isolation procedures are described. Furthermore, we investigated the interaction between the vitamin D receptor (VDR) and calcioic acid. Calcioic acid was able to bind VDR with a binding constant of 71 µM. In cells, calcioic acid reduced the transcription of VDR target gene CYP24A1 in the presence 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) but did not induce the transcription of CYP24A1. Therefore, calcioic acid is a very weak VDR antagonist. With the generation of gram quantities, further studies are expected to reveal if calcioic acid is solely a water-soluble metabolite of vitamin D or if it mediates other biological functions through biomolecules other than VDR.
Collapse
Affiliation(s)
- Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI 53211, USA
| | - Tania R Mutchie
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI 53211, USA
| | - Elliot S Di Milo
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI 53211, USA.
| |
Collapse
|
6
|
Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem Funct 2019; 37:408-423. [PMID: 31328813 DOI: 10.1002/cbf.3421] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Collapse
Affiliation(s)
- Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Kaufmann M, Martineau C, Arabian A, Traynor M, St-Arnaud R, Jones G. Calcioic acid: In vivo detection and quantification of the terminal C24-oxidation product of 25-hydroxyvitamin D 3 and related intermediates in serum of mice treated with 24,25-dihydroxyvitamin D 3. J Steroid Biochem Mol Biol 2019; 188:23-28. [PMID: 30553931 PMCID: PMC9703456 DOI: 10.1016/j.jsbmb.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Calcitroic acid, the excretory form of vitamin D, is the terminal product of a 5-step pathway catalyzed by CYP24A1, commencing with C24-hydroxylation of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Catabolism of 25-hydroxyvitamin D3 (25-OH-D3) proceeds via analogous steps culminating in calcioic acid; however this C23-truncated acid has not been reported in the circulation. It has recently been shown that 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) is an important factor in optimal bone fracture healing acting via an effector molecule FAM57B2 to produce lactosylceramide. Administration of 24,25-(OH)2D3 was found to restore normal fracture repair in Cyp24a1-/- mice devoid of 24,25-(OH)2D3. We set out to study the multi-step catabolism of D3 metabolites in vivo using LC-MS/MS methods in vehicle or 24,25-(OH)2D3-treated mice. Vehicle-treated Cyp24a1+/- mice possessed normal levels of serum 24,25-(OH)2D3 (7 ng/mL) and 25-OH-D3-26,23-lactone (4 ng/mL). We also detected 24-oxo-25-OH-D3 (3 ng/mL) and 24-oxo-23,25-(OH)2D3 (0.4 ng/mL); which were not detectable in vehicle-treated Cyp24a1-/- mice. In 24,25-(OH)2D3-treated Cyp24a1+/- mice, serum 24,25-(OH)2D3 rose to 200 ng/mL while 25-OH-D3-26,23-lactone remained unchanged in comparison to vehicle-treated Cyp24a1+/- mice Concentration of serum 24-oxo-25-OH-D3 and 24-oxo-23,25-(OH)2D3 rose by 10-fold, when Cyp24a1+/- mice were treated with 24,25-(OH)2D3 Calcioic acid was increased to 0.030 ng/mL for 24,25-(OH)2D3-treated Cyp24a1+/- mice. In 24,25-(OH)2D3-treated Cyp24a1-/- mice, serum 24,25-(OH)2D3 rose further to a striking 830 ng/mL due to lack of catabolism of the 24,25-(OH)2D3 dose. Serum 1,25-(OH)2D3 levels were suppressed in 24,25-(OH)2D3-treated Cyp24a1+/- and Cyp24a1-/- mice. Circulating 1,24,25-(OH)3D3 rose from 73 pg/mL to 106 pg/mL when Cyp24a1+/- mice were treated with 24,25-(OH)2D3. While undetectable in vehicle-treated Cyp24a1-/- mice, 1,24,25-(OH)3D3 rose unexpectedly to 153 pg/mL in 24,25-(OH)2D3-treated nulls suggesting conversion of 24,25-(OH)2D3 to 1,24,25-(OH)3D3 via 1-hydroxylation. Taken together, amplification of 24,25-(OH)2D3 catabolism by exogenous doses of this metabolite have enabled detection of downstream C24-oxidation pathway products in vivo, including calcioic acid; and provides a platform for studying alternative routes of vitamin D metabolism that may occur in pathological states including hypervitaminosis D and idiopathic infantile hypercalcemia caused by mutations of CYP24A1.
Collapse
Affiliation(s)
- Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Corine Martineau
- Research Centre - Shriners Hospitals for Children - Canada, Montreal, PQ, Canada
| | - Alice Arabian
- Research Centre - Shriners Hospitals for Children - Canada, Montreal, PQ, Canada
| | - Mary Traynor
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - René St-Arnaud
- Research Centre - Shriners Hospitals for Children - Canada, Montreal, PQ, Canada; Department of Human Genetics, and Department of Surgery, McGill University, Montréal, PQ, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
8
|
Abstract
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH)2D3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA.
| | - Donald L Trump
- Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA
| |
Collapse
|
9
|
Abstract
Calcitroic acid was isolated and characterized almost four decades ago, but little is known about this important vitamin D metabolite. Four reported synthetic strategies to generate calcitroic acid are presented that highlight the scientific progress in the field of chemistry directed to vitamin D analog synthesis. The most recent synthesis described the generation of calcitroic acid with an overall yield of 12.8% in 13 steps. The endogenous formation of calcitroic acid has been demonstrated in perfused rat kidney using 24,25,26,27-tetranor-1,23(OH)2D3. Although, the majority of vitamin D metabolism is mediated by 24-hydoxylase (CYP24A1), it is not clear why the formation of calcitroic acid was not observed in the presence of recombinant CYP24A1 enzyme. Furthermore, it is not known if enzyme 1α-hydroxylase (CYP27B1) can convert calcioic acid into calcitroic acid. In addition to the lack of research investigating the endogenous formation of calcitroic acid, the physiological role of calcitroic acid remains unknown. Only a few reports mentioned the biological activity of calcitroic acid in connection with the vitamin D receptor (VDR). When administered subcutaneously, calcitroic acid has anthracitic properties and elevates calcium blood levels when administered intravenously. In vitro, calcitroic acid at higher concentrations has been shown to bind VDR and induce gene transcription. However, these studies were not carried out in cells derived from target organs of calcitroic acid such as kidney, liver, and intestine. We can conclude that our current knowledge of calcitroic acid is limited, and more studies are needed to identify its physiological role.
Collapse
Affiliation(s)
- Olivia B. Yu
- Department
of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin—Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department
of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin—Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
10
|
Rhieu SY, Annalora AJ, LaPorta E, Welsh J, Itoh T, Yamamoto K, Sakaki T, Chen TC, Uskokovic MR, Reddy GS. Potent antiproliferative effects of 25-hydroxy-16-ene-23-yne-vitamin D₃ that resists the catalytic activity of both CYP27B1 and CYP24A1. J Cell Biochem 2015; 115:1392-402. [PMID: 24535953 DOI: 10.1002/jcb.24789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/06/2022]
Abstract
The potency of 25-hydroxyvitamin D3 (25(OH)D3) is increased by several fold through its metabolism into 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by cytochrome P450 27B1 (CYP27B1). Thus, the pivotal role of 1α-hydroxylation in the activation of vitamin D compounds is well known. Here, we examined the metabolism of 25-hydroxy-16-ene-23-yne-vitamin D3 (25(OH)-16-ene-23-yne-D3), a synthetic analog of 25(OH)D3 in a cell-free system and demonstrated that 25(OH)-16-ene-23-yne-D3 is neither activated by CYP27B1 nor inactivated by cytochrome P450 24A1 (CYP24A1). These findings were also confirmed in immortalized normal human prostate epithelial cells (PZ-HPV-7) which are known to express both CYP27B1 and CYP24A1, indicating that the structural modifications featured in 25(OH)-16-ene-23-yne-D3 enable the analog to resist the actions of both CYP27B1 and CYP24A1. To provide intelligible structure-function information, we also performed molecular docking analysis between the analog and CYP27B1. Furthermore, 25(OH)-16-ene-23-yne-D3 was found to suppress the growth of PZ-HPV-7 cells with a potency equivalent to 1α,25(OH)2D3. The antiproliferative activity of 25(OH)-16-ene-23-yne-D3 was found to be vitamin D receptor (VDR)-dependent as it failed to inhibit the growth of mammary tumor cells derived from VDR-knockout mice. Furthermore, stable introduction of VDR into VDR-knockout cells restored the growth inhibition by 25(OH)-16-ene-23-yne-D3. Thus, we identified 25-hydroxy-16-ene-23-yne-vitamin D3 as a novel non-1α-hydroxylated vitamin D analog which is equipotent to 1α,25(OH)2D3 in its antiproliferative activity. We now propose that the low potency of the intrinsic VDR-mediated activities of 25(OH)D3 can be augmented to the level of 1α,25(OH)2D3 without its activation through 1α-hydroxylation by CYP27B1, but by simply preventing its inactivation by CYP24A1.
Collapse
Affiliation(s)
- Steve Y Rhieu
- Epimer LLC, North Smithfield, Rhode Island, 02896, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tieu EW, Tang EKY, Tuckey RC. Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway. FEBS J 2014; 281:3280-96. [PMID: 24893882 DOI: 10.1111/febs.12862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
CYP24A1 is the multicatalytic cytochrome P450 responsible for the catabolism of vitamin D via the C23- and C24-oxidation pathways. We successfully expressed the labile human enzyme in Escherichia coli and partially purified it in an active state that permitted detailed characterization of its metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] and the intermediates of the C24-oxidation pathway in a phospholipid-vesicle reconstituted system. The C24-oxidation pathway intermediates, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, 24-oxo-1,23,25-trihydroxyvitamin D3 and tetranor-1,23-dihydroxyvitamin D3, were enzymatically produced from 1,25(OH)2 D3 using rat CYP24A1. Both 1,25(OH)2 D3 and 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 were found to partition strongly into the phospholipid bilayer when in aqueous medium. Changes to the phospholipid concentration did not affect the kinetic parameters for the metabolism of 1,25(OH)2 D3 by CYP24A1, indicating that it is the concentration of substrates in the membrane phase (mol substrate·mol phospholipid(-1) ) that determines their rate of metabolism. CYP24A1 exhibited Km values for the different C24-intermediates ranging from 0.34 to 15 mmol·mol phospholipid(-1) , with 24-oxo-1,23,25-trihydroxyvitamin D3 [24-oxo-1,23,25(OH)3 D3] displaying the lowest and 1,24,25-trihydroxyvitamin D3 [1,24,25(OH)3 D3] displaying the highest. The kcat values varied by up to 3.8-fold, with 1,24,25(OH)3 D3 displaying the highest kcat (34 min(-1) ) and 24-oxo-1,23,25(OH)3 D3 the lowest. The data show that the cleavage of the side chain of 24-oxo-1,23,25(OH)3 D3 occurs with the highest catalytic efficiency (kcat /Km ) and produces 1-hydroxy-23-oxo-24,25,26,27-tetranorvitamin D3 and not 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, as the primary product. These kinetic analyses also show that intermediates of the C24-oxidation pathway effectively compete with precursor substrates for binding to the active site of the enzyme, which manifests as an accumulation of intermediates, indicating that they dissociate after each catalytic step.
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
12
|
Rhieu SY, Annalora AJ, Wang G, Flarakos CC, Gathungu RM, Vouros P, Sigüeiro R, Mouriño A, Schuster I, Palmore GTR, Reddy GS. Metabolic stability of 3-Epi-1α,25-dihydroxyvitamin D3over 1α, 25-dihydroxyvitamin D3: Metabolism and molecular docking studies using rat CYP24A1. J Cell Biochem 2013; 114:2293-305. [DOI: 10.1002/jcb.24576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Andrew J. Annalora
- Department of Molecular Biology; The Scripps Research Institute; La Jolla; California; 92037
| | | | - Caroline C. Flarakos
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Rose M. Gathungu
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Paul Vouros
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Rita Sigüeiro
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; E-15706; Santiago de Compostela; Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; E-15706; Santiago de Compostela; Spain
| | - Inge Schuster
- Institute for Theoretical Chemistry; University of Vienna; Vienna; Austria
| | | | | |
Collapse
|
13
|
Dror Y, Giveon SM, Hoshen M, Feldhamer I, Balicer RD, Feldman BS. Vitamin D levels for preventing acute coronary syndrome and mortality: evidence of a nonlinear association. J Clin Endocrinol Metab 2013; 98:2160-7. [PMID: 23533239 DOI: 10.1210/jc.2013-1185] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Low serum calcidiol has been associated with multiple comorbidities and mortality but no "safe" range has been found for the upper concentration. OBJECTIVE We aim to establish the upper threshold of serum calcidiol, beyond which there is an increased risk for acute coronary syndrome and/or mortality. DESIGN, SETTING, AND PARTICIPANTS We extracted data for 1,282,822 Clalit Health Services members aged >45 between July 2007 and December 2011. Records of mortality or acute coronary syndrome were extracted during the follow-up period. Kaplan-Meier analysis calculated time to episode and Cox regression models generated adjusted hazard ratios for episode by calcidiol group (<10, 10.1-20, 20.1-36, and >36.1 ng/mL). OUTCOME MEASURES Acute coronary syndrome subsuming all-cause mortality. RESULTS During the 54-month study period, 422,822 Clalit Health Services members were tested for calcidiol, of which 12,280 died of any cause (905 with acute coronary syndrome) and 3933 were diagnosed with acute coronary syndrome. Compared to those with 20-36 ng/mL, the adjusted hazard ratios among those with levels of <10, 10-20, and >36 ng/mL were 1.88 (confidence interval [CI]: 1.80-1.96), 1.25 (CI: 1.21-1.30), and 1.13 (CI: 1.04-1.22) (P < .05), respectively. LIMITATIONS The study cohort comprised only 30% of the population, those tested for vitamin D. The small sample size of those with calcidiol >36 ng/mL prevented further analysis of this group. CONCLUSIONS Vitamin D in the 20-36 ng/mL range was associated with the lowest risk for mortality and morbidity. The hazard ratio below and above this range increases significantly.
Collapse
Affiliation(s)
- Yosef Dror
- School of Nutrition, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
14
|
Gathungu RM, Flarakos CC, Reddy GS, Vouros P. The role of mass spectrometry in the analysis of vitamin D compounds. MASS SPECTROMETRY REVIEWS 2013; 32:72-86. [PMID: 22996283 DOI: 10.1002/mas.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 06/01/2023]
Abstract
This review highlights the superseding role of mass spectrometry in the structural characterization and quantitation of vitamin D compounds in comparison to other analytical methods (e.g., UV, bioassays) that lack the sensitivity and specificity of mass spectrometry. After a short introduction to the biochemistry of vitamin D compounds, an overview of the current techniques to characterize and quantitate vitamin D compounds is given with emphasis on the contribution of mass spectrometry.
Collapse
Affiliation(s)
- Rose M Gathungu
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|