1
|
Kwizera R, Xie J, Nurse N, Yuan C, Kirchmaier AL. Impacts of Nucleosome Positioning Elements and Pre-Assembled Chromatin States on Expression and Retention of Transgenes. Genes (Basel) 2024; 15:1232. [PMID: 39336823 PMCID: PMC11431089 DOI: 10.3390/genes15091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Transgene applications, ranging from gene therapy to the development of stable cell lines and organisms, rely on maintaining the expression of transgenes. To date, the use of plasmid-based transgenes has been limited by the loss of their expression shortly after their delivery into the target cells. The short-lived expression of plasmid-based transgenes has been largely attributed to host-cell-mediated degradation and/or silencing of transgenes. The development of chromatin-based strategies for gene delivery has the potential to facilitate defining the requirements for establishing epigenetic states and to enhance transgene expression for numerous applications. METHODS To assess the impact of "priming" plasmid-based transgenes to adopt accessible chromatin states to promote gene expression, nucleosome positioning elements were introduced at promoters of transgenes, and vectors were pre-assembled into nucleosomes containing unmodified histones or mutants mimicking constitutively acetylated states at residues 9 and 14 of histone H3 or residue 16 of histone H4 prior to their introduction into cells, then the transgene expression was monitored over time. RESULTS DNA sequences capable of positioning nucleosomes could positively impact the expression of adjacent transgenes in a distance-dependent manner in the absence of their pre-assembly into chromatin. Intriguingly, the pre-assembly of plasmids into chromatin facilitated the prolonged expression of transgenes relative to plasmids that were not pre-packaged into chromatin. Interactions between pre-assembled chromatin states and nucleosome positioning-derived effects on expression were also assessed and, generally, nucleosome positioning played the predominant role in influencing gene expression relative to priming with hyperacetylated chromatin states. CONCLUSIONS Strategies incorporating nucleosome positioning elements and the pre-assembly of plasmids into chromatin prior to nuclear delivery can modulate the expression of plasmid-based transgenes.
Collapse
Affiliation(s)
- Ronard Kwizera
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nathan Nurse
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Zhang J, Wang TY, Zhang C, Mi C, Geng S, Tang Y, Wang X. CMV/AAT promoter of MAR-based episomal vector enhanced transgene expression in human hepatic cells. 3 Biotech 2023; 13:354. [PMID: 37810190 PMCID: PMC10558423 DOI: 10.1007/s13205-023-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
We have previously developed a non-viral episomal vector based on matrix attachment region (MAR) that can facilitate plasmid replication episomally in mammal cells. In this study, we have focused on the development of an alternative tissue specific episomal vector by incorporating into cis-acting elements. We found that AAT promoter demonstrated the highest eGFP expression level in HepG2, Huh-7 and HL-7702 hepatic cells. Furthermore, hCMV enhancer when combined with AAT promoter significantly improved the eGFP expression level in the transfected HepG2 cells. The mean fluorescence intensity of eGFP in hCMV2 group was 1.33 fold, which was higher than that of the control (p < 0.01), followed by the hCMV1 group (1.21 fold). In addition, the percentages of eGFP-expressing cells in hCMV1 and hCMV2 groups were observed to be 49.3% and 57.2%, which were significantly higher than that of the enhancer-devoid control vector (44.3%) (p < 0.05). Moreover, the eGFP protein were up to 3.5 fold and 5.1 fold (p < 0.05), respectively. This observation could be related with the activities of some specific transcription factors (TFs) during the transcriptional process, such as SRF, REL and CREB1. The composite CMV/AAT promoter can be thus used for efficient transgene expression of MAR-based episomal vector in liver cells and as a potential gene transfer tools for the management of liver diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03774-x.
Collapse
Affiliation(s)
- Jihong Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Tian-Yun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Chunbo Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453000 China
| | - Chunliu Mi
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shaolei Geng
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| |
Collapse
|
3
|
Suzuki T, Wakao Y, Goda T, Kamiya H. Conventional plasmid DNAs with a CpG-containing backbone achieve durable transgene expression in mouse liver. J Gene Med 2020; 22:e3138. [PMID: 31696985 DOI: 10.1002/jgm.3138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Durable transgene expression from plasmid DNAs is the key to gene therapy with non-viral vectors. A comparison of the durability of transgene expression from plasmid DNAs with the CpG-free and -containing backbones is important. METHODS We constructed plasmid DNAs with the CpG-containing backbone, various transcription regulatory sequences with and without CpG, and the gene encoding Gaussia princeps luciferase, which is apparently non-immunogenic. The tail vein hydrodynamics-based method was used for plasmid injection into mice, and the luciferase activity in serum was tracked for 28 days. RESULTS The plasmid DNAs containing the albumin promoter [with or without the cytomegalovirus (CMV) enhancer] and the elongation factor (EF)1α promoter plus the CMV enhancer exhibited long-term luciferase expression. The expression from the plasmid DNA containing the albumin promoter without the CMV enhancer was maintained for at least 24 weeks and was similar to that from the corresponding CpG-free plasmid DNA. CONCLUSIONS The results obtained in the present study suggest that special sequences/systems are unnecessary for durable transgene expression from plasmid DNAs when the proper transcription regulatory sequences are used.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Wakao
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Goda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Ohyama T. New Aspects of Magnesium Function: A Key Regulator in Nucleosome Self-Assembly, Chromatin Folding and Phase Separation. Int J Mol Sci 2019; 20:ijms20174232. [PMID: 31470631 PMCID: PMC6747271 DOI: 10.3390/ijms20174232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Metal cations are associated with many biological processes. The effects of these cations on nucleic acids and chromatin were extensively studied in the early stages of nucleic acid and chromatin research. The results revealed that some monovalent and divalent metal cations, including Mg2+, profoundly affect the conformations and stabilities of nucleic acids, the folding of chromatin fibers, and the extent of chromosome condensation. Apart from these effects, there have only been a few reports on the functions of these cations. In 2007 and 2013, however, Mg2+-implicated novel phenomena were found: Mg2+ facilitates or enables both self-assembly of identical double-stranded (ds) DNA molecules and self-assembly of identical nucleosomes in vitro. These phenomena may be deeply implicated in the heterochromatin domain formation and chromatin-based phase separation. Furthermore, a recent study showed that elevation of the intranuclear Mg2+ concentration causes unusual differentiation of mouse ES (embryonic stem) cells. All of these phenomena seem to be closely related to one another. Mg2+ seems to be a key regulator of chromatin dynamics and chromatin-based biological processes.
Collapse
Affiliation(s)
- Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
5
|
Suzuki T, Wakao Y, Watanabe T, Hori M, Ikeda Y, Tsuchiya H, Kogure K, Harada-Shiba M, Fujimuro M, Kamiya H. No enhancing effects of plasmid-specific histone acetyltransferase recruitment system on transgene expression in vivo. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:942-949. [PMID: 31299884 DOI: 10.1080/15257770.2019.1638514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Altered levels of histone acetylation are associated with changes in chromosomal gene expression. Thus, the specific acetylation of histones bound to plasmid DNA might increase transgene expression. Previously, the expression of the histone acetyltransferase domain of CREB-binding protein fused to the sequence-dependent DNA binding domain of GAL4 (GAL4-HAT) successfully improved reporter gene expression in cultured cells [J. Biosci. Bioengng. 123, 277-280 (2017)]. In this study, the same approach was applied for transgene expression in mice. The activator and reporter plasmid DNAs bearing the genes for GAL4-HAT and Gaussia princeps luciferase, respectively, were co-administered into the mouse liver by hydrodynamics-based tail vein injection, and the Gaussia luciferase activity in serum was measured for two weeks. Unexpectedly, the co-injection of the GAL4-HAT and luciferase plasmid DNAs seemed to decrease, rather than increase, luciferase expression. Moreover, the co-injection apparently reduced the amount of luciferase DNA in the liver. These results indicated that this system is ineffective in vivo and suggested the exclusion of hepatic cells expressing GAL4-HAT.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan
| | - Yusuke Wakao
- Graduate School of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan
| | - Tadashi Watanabe
- Department of Cell Biology , Kyoto Pharmaceutical University , Kyoto , Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology , National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Yoshito Ikeda
- Department of Biophysical Chemistry , Kyoto Pharmaceutical University , Kyoto , Japan.,Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University , Kobe , Japan
| | - Hiroyuki Tsuchiya
- Department of Biophysical Chemistry , Kyoto Pharmaceutical University , Kyoto , Japan.,Graduate School of Medicine , Tottori University , Yonago , Tottori , Japan
| | - Kentaro Kogure
- Department of Biophysical Chemistry , Kyoto Pharmaceutical University , Kyoto , Japan.,Graduate School of Biomedical Sciences , Tokushima University , Tokushima , Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology , National Cerebral and Cardiovascular Center Research Institute , Suita , Osaka , Japan
| | - Masahiro Fujimuro
- Department of Cell Biology , Kyoto Pharmaceutical University , Kyoto , Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan
| |
Collapse
|
6
|
Miura O, Ogake T, Yoneyama H, Kikuchi Y, Ohyama T. A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Curr Genet 2018; 65:575-590. [PMID: 30498953 PMCID: PMC6420913 DOI: 10.1007/s00294-018-0907-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
DNA sequences that read the same from 5′ to 3′ in either strand are called inverted repeat sequences or simply IRs. They are found throughout a wide variety of genomes, from prokaryotes to eukaryotes. Despite extensive research, their in vivo functions, if any, remain unclear. Using Saccharomyces cerevisiae, we performed genome-wide analyses for the distribution, occurrence frequency, sequence characteristics and relevance to chromatin structure, for the IRs that reportedly have a cruciform-forming potential. Here, we provide the first comprehensive map of these IRs in the S. cerevisiae genome. The statistically significant enrichment of the IRs was found in the close vicinity of the DNA positions corresponding to polyadenylation [poly(A)] sites and ~ 30 to ~ 60 bp downstream of start codon-coding sites (referred to as ‘start codons’). In the former, ApT- or TpA-rich IRs and A-tract- or T-tract-rich IRs are enriched, while in the latter, different IRs are enriched. Furthermore, we found a strong structural correlation between the former IRs and the poly(A) signal. In the chromatin formed on the gene end regions, the majority of the IRs causes low nucleosome occupancy. The IRs in the region ~ 30 to ~ 60 bp downstream of start codons are located in the + 1 nucleosomes. In contrast, fewer IRs are present in the adjacent region downstream of start codons. The current study suggests that the IRs play similar roles in Escherichia coli and S. cerevisiae to regulate or complete transcription at the RNA level.
Collapse
Affiliation(s)
- Osamu Miura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshihiro Ogake
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroki Yoneyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yo Kikuchi
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
7
|
Miura O, Ogake T, Ohyama T. Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses. Curr Genet 2018; 64:945-958. [PMID: 29484452 PMCID: PMC6060812 DOI: 10.1007/s00294-018-0815-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Abstract
Inverted repeat (IR) sequences are DNA sequences that read the same from 5' to 3' in each strand. Some IRs can form cruciforms under the stress of negative supercoiling, and these IRs are widely found in genomes. However, their biological significance remains unclear. The aim of the current study is to explore this issue further. We constructed the first Escherichia coli genome-wide comprehensive map of IRs with cruciform-forming potential. Based on the map, we performed detailed and quantitative analyses. Here, we report that IRs with cruciform-forming potential are statistically enriched in the following five regions: the adjacent regions downstream of the stop codon-coding sites (referred to as the stop codons), on and around the positions corresponding to mRNA ends (referred to as the gene ends), ~ 20 to ~45 bp upstream of the start codon-coding sites (referred to as the start codons) within the 5'-UTR (untranslated region), ~ 25 to ~ 60 bp downstream of the start codons, and promoter regions. For the adjacent regions downstream of the stop codons and on and around the gene ends, most of the IRs with a repeat unit length of ≥ 8 bp and a spacer size of ≤ 8 bp were parts of the intrinsic terminators, regardless of the location, and presumably used for Rho-independent transcription termination. In contrast, fewer IRs were present in the small region preceding the start codons. In E. coli, IRs with cruciform-forming potential are actively placed or excluded in the regulatory regions for the initiation and termination of transcription and translation, indicating their deep involvement or influence in these processes.
Collapse
Affiliation(s)
- Osamu Miura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshihiro Ogake
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
8
|
Nishihara M, Kanda GN, Suzuki T, Yamakado S, Harashima H, Kamiya H. Enhanced transgene expression by plasmid-specific recruitment of histone acetyltransferase. J Biosci Bioeng 2017; 123:277-280. [DOI: 10.1016/j.jbiosc.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
|
9
|
Nishimura E, Jumyo S, Arai N, Kanna K, Kume M, Nishikawa JI, Tanase JI, Ohyama T. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. PLANTA 2014; 240:147-59. [PMID: 24771022 DOI: 10.1007/s00425-014-2072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/24/2014] [Indexed: 05/09/2023]
Abstract
Although the S-like ribonucleases (RNases) share sequence homology with the S-RNases involved in the self-incompatibility mechanism in plants, they are not associated with this mechanism. They usually function in stress responses in non-carnivorous plants and in carnivory in carnivorous plants. In this study, we clarified the structures of the S-like RNases of Aldrovanda vesiculosa, Nepenthes bicalcarata and Sarracenia leucophylla, and compared them with those of other plants. At ten positions, amino acid residues are conserved or almost conserved only for carnivorous plants (six in total). In contrast, two positions are specific to non-carnivorous plants. A phylogenetic analysis revealed that the S-like RNases of the carnivorous plants form a group beyond the phylogenetic relationships of the plants. We also prepared and characterized recombinant S-like RNases of Dionaea muscipula, Cephalotus follicularis, A. vesiculosa, N. bicalcarata and S. leucophylla, and RNS1 of Arabidopsis thaliana. The recombinant carnivorous plant enzymes showed optimum activities at about pH 4.0. Generally, poly(C) was digested less efficiently than poly(A), poly(I) and poly(U). The kinetic parameters of the recombinant D. muscipula enzyme (DM-I) and A. thaliana enzyme RNS1 were similar. The k cat/K m of recombinant RNS1 was the highest among the enzymes, followed closely by that of recombinant DM-I. On the other hand, the k cat/K m of the recombinant S. leucophylla enzyme was the lowest, and was ~1/30 of that for recombinant RNS1. The magnitudes of the k cat/K m values or k cat values for carnivorous plant S-like RNases seem to correlate negatively with the dependency on symbionts for prey digestion.
Collapse
Affiliation(s)
- Emi Nishimura
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Anatomy of plasmid DNAs with anti-silencing elements. Int J Pharm 2014; 464:27-33. [DOI: 10.1016/j.ijpharm.2014.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/07/2014] [Accepted: 01/18/2014] [Indexed: 12/13/2022]
|
11
|
Kamiya H, Miyamoto S, Goto H, Kanda GN, Kobayashi M, Matsuoka I, Harashima H. Enhanced transgene expression from chromatinized plasmid DNA in mouse liver. Int J Pharm 2012; 441:146-50. [PMID: 23247018 DOI: 10.1016/j.ijpharm.2012.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/30/2012] [Accepted: 12/05/2012] [Indexed: 01/22/2023]
Abstract
Plasmid DNA was chromatinized with core histones (H2A, H2B, H3, and H4) in vitro and was delivered into mouse liver by hydrodynamics-based administration. Transgene expression from the chromatinized plasmid DNA was more efficient than that from plasmid DNA delivered in the naked form. The use of acetylation-enriched histones isolated from cells treated with a histone deacetylase inhibitor (trichostatin A) seemed to be more effective. These results indicated that chromatinized plasmid DNA is useful for efficient transgene expression in vivo.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Udagawa K, Kimura H, Tanabe H, Ohyama T. Nuclear localization of reporter genes activated by curved DNA. J Biosci Bioeng 2011; 113:431-7. [PMID: 22197431 DOI: 10.1016/j.jbiosc.2011.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Curved DNA structures with a left-handed superhelical conformation can activate eukaryotic transcription. Mechanistically, these structures favor binding to histone cores and can function as a docking site for sliding nucleosomes. Thus, promoters with this kind of curved DNA can adopt a more open structure, facilitating transcription initiation. However, whether the curved DNA segment can affect localization of a reporter gene is an open question. Localization of a gene in the nucleus often plays an important role in its expression and this phenomenon may also have a curved DNA-dependent mechanism. We examined this issue in transient and stable assay systems using a 180-bp synthetic curved DNA with a left-handed superhelical conformation. The results clearly showed that curved DNA of this kind does not have a property to deliver reporter constructs to nuclear positions that are preferable for transcription. We also identify the spatial location to which electroporation delivers a reporter plasmid in the nucleus.
Collapse
Affiliation(s)
- Koji Udagawa
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
13
|
Fukunaga S, Kanda G, Tanase J, Harashima H, Ohyama T, Kamiya H. A designed curved DNA sequence remarkably enhances transgene expression from plasmid DNA in mouse liver. Gene Ther 2011; 19:828-35. [DOI: 10.1038/gt.2011.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Ito M, Suda Y, Harashima H, Kamiya H. Cytotoxic effect of Drosophila deoxynucleoside kinase gene on replicating plasmid in HeLa cells. Biol Pharm Bull 2010; 33:1223-7. [PMID: 20606317 DOI: 10.1248/bpb.33.1223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To enhance the levels of transgene expression from plasmid-based nonviral vectors, replicating plasmids containing the SV40 origin and the SV40 large T antigen gene, as a model replicating unit, were constructed. The replicating luciferase plasmid DNA produced the luciferase protein more efficiently than the non-replicating luciferase plasmid DNA, as expected. Surprisingly, the introduction of the replicating plasmid DNA containing the Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) gene was highly cytotoxic and caused cell death without nucleoside analogs. Our results confirm that transgenes on a replicating plasmid represent an excellent tool for effective protein production and suggest that efficient production of the Dm-dNK protein in tumor cells could be an attractive cancer therapy.
Collapse
Affiliation(s)
- Mana Ito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
15
|
Kamiya H, Goto H, Kanda G, Yamada Y, Harashima H. Transgene expression efficiency from plasmid DNA delivered as a complex with histone H3. Int J Pharm 2010; 392:249-53. [DOI: 10.1016/j.ijpharm.2010.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
16
|
Tanase JI, Morohashi N, Fujita M, Nishikawa JI, Shimizu M, Ohyama T. Highly efficient chromatin transcription induced by superhelically curved DNA segments: the underlying mechanism revealed by a yeast system. Biochemistry 2010; 49:2351-8. [PMID: 20166733 DOI: 10.1021/bi901950w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superhelically curved DNA structures can strongly activate transcription in mammalian cells. However, the mechanism underlying the activation has not been clarified. We investigated this mechanism in yeast cells, using 108, 180, and 252 bp synthetic curved DNA segments. Even in the presence of nucleosomes, these DNAs activated transcription from a UAS-deleted CYC1 promoter that is silenced in the presence of nucleosomes. The fold-activations of transcription by these segments, relative to the transcription on the control that lacked such segments, were 51.4, 63.4, and 56.4, respectively. The superhelically curved DNA structures favored nucleosome formation. However, the translational positions of the nucleosomes were dynamic. The high mobility of the nucleosomes on the superhelically curved DNA structures seemed to influence the mobility of the nucleosomes formed on the promoter and eventually enhanced the access to the center region of one TATA sequence. Functioning as a dock for the histone core and allowing nucleosome sliding seem to be the mechanisms underlying the transcriptional activation by superhelically curved DNA structures in chromatin. The present study provides important clues for designing and constructing artificial chromatin modulators, as a tool for chromatin engineering.
Collapse
Affiliation(s)
- Jun-ichi Tanase
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Tanase JI, Mitani T, Udagawa K, Nishikawa JI, Ohyama T. Competence of an artificial bent DNA as a transcriptional activator in mouse ES cells. Mol Biol Rep 2010; 38:37-47. [PMID: 20306228 DOI: 10.1007/s11033-010-0075-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/05/2010] [Indexed: 11/29/2022]
Abstract
Curved DNA structures with a left-handed superhelical conformation can activate eukaryotic transcription. However, their potency in transgene activation in embryonic stem (ES) cells has not been examined. T20 is an artificial curved DNA of 180 bp that serves as a transcriptional activator. We investigated the effect of T20 on transcription in mouse ES cell lines or hepatocytes differentiated from them. We established 10 sets of cell lines each harboring a single copy of the reporter construct. Each set comprised a T20-harboring cell line and a T20-less control cell line. Analyses showed that in ES cells and in hepatocytes originating from these cells, T20 both activated and repressed transcription in a manner that was dependent on the locus of reporter. The present and previous studies strongly suggest that in cells that have a strict gene regulation system, transcriptional activation by T20 occurs only in a transcriptionally active locus in the genome.
Collapse
Affiliation(s)
- Jun-ichi Tanase
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | | | |
Collapse
|
18
|
Effects of non-B DNA sequences on transgene expression. J Biosci Bioeng 2009; 108:20-3. [PMID: 19577186 DOI: 10.1016/j.jbiosc.2009.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 11/21/2022]
Abstract
DNA conformation may be an important factor affecting gene transcription. In this study, we examined how DNA sequences with unusual conformations affect transgene expression. A(30) and (CG)(15) sequences that can adopt the B' and Z conformations, respectively, were introduced into a beta-actin promoter. Luciferase plasmids containing the manipulated promoter were transfected into NIH3T3 cells by electroporation and were delivered into mouse livers with a hydrodynamics-based injection. Expression from plasmid with the (CG)(15) sequence was multiple times higher than expression from control plasmid DNA. The A(30) sequence also tended to enhance expression. These results suggest that non-B DNA sequences could improve transgene expression in cells.
Collapse
|
19
|
|
20
|
Kamiya H, Fukunaga S, Ohyama T, Harashima H. Effects of carriers on transgene expression from plasmids containing a DNA sequence with high histone affinity. Int J Pharm 2009; 376:99-103. [PMID: 19409470 DOI: 10.1016/j.ijpharm.2009.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/18/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
The intranuclear disposition of plasmid DNA is highly important for transgene expression. The effects of a left-handedly curved sequence with high histone affinity on transgene expression were examined in COS-7 cells with two kinds of carriers (Lipofectamine Plus and TransIT-LT1). Three plasmids containing the curved sequence at different positions were transfected. The transgene expression was affected by the position of the left-handedly curved sequence, and the sequence at appropriate locations enhanced the expression from plasmid DNAs. However, the position effects on the expression differed from those obtained by electroporation of the same plasmid DNAs in a naked form. In addition, the degree of expression enhancement seemed to depend on the carriers. These results suggest that the left-handedly curved sequence with high histone affinity could increase the transgene expression from a plasmid delivered with carriers.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
21
|
Harashima H, Kogure K, Yamada Y, Akita H, Kamiya H. [Development of multifunctional envelope type artificial viral-like gene delivery system]. YAKUGAKU ZASSHI 2007; 127:1655-72. [PMID: 17917423 DOI: 10.1248/yakushi.127.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review introduces a new concept "Programmed Packaging" to develop a non-viral gene delivery system. Based on this concept, multifunctional envelope type nano devices (MEND) were developed for in vitro, in situ and in vivo conditions. A quantitative study to identify a rate limiting step in intracellular trafficking was also shown between viral and non-viral vectors, which indicated an important role of controlled intranuclear disposition for development a safe and efficient non-viral gene delivery system. This review will provide a future direction of non-viral gene delivery system.
Collapse
Affiliation(s)
- Hideyoshi Harashima
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | |
Collapse
|
22
|
Ochiai H, Fujimuro M, Yokosawa H, Harashima H, Kamiya H. Transient activation of transgene expression by hydrodynamics-based injection may cause rapid decrease in plasmid DNA expression. Gene Ther 2007; 14:1152-9. [PMID: 17525703 DOI: 10.1038/sj.gt.3302970] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The intranuclear disposition of exogenous DNA is quite important for the therapeutic effects of the administered DNA. The expression efficiency from one copy of exogenous DNA delivered by hydrodynamics-based injection dramatically decreases over time, and this 'silencing' occurs without CpG methylation. In this study, naked luciferase-plasmid DNA was delivered into mouse liver by hydrodynamics-based injection, and modifications of the histones bound to the plasmid DNA were analyzed by a chromatin immunoprecipitation (ChIP) analysis. In addition, the effects of a second hydrodynamics-based injection on the expression from the plasmid DNA were examined. The ChIP analysis revealed that the modification status of histone H3 remained constant from 4 h to 4 weeks. Surprisingly, the injection of saline without DNA enhanced the luciferase expression from the preexisting DNA administered 4 and 14 days previously. Our results suggest that histone modification plays no role in the silencing. Instead, our data suggest that the transgene expression is activated by the hydrodynamics-based injection manipulation, and that the return from the activated status causes the silencing.
Collapse
Affiliation(s)
- H Ochiai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | |
Collapse
|