1
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
3
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Sun C, Zhang R, Xie C. Efficient Synthesis of (R)-(+)-Perillyl Alcohol From (R)-(+)-Limonene Using Engineered Escherichia coli Whole Cell Biocatalyst. Front Bioeng Biotechnol 2022; 10:900800. [PMID: 35547170 PMCID: PMC9084310 DOI: 10.3389/fbioe.2022.900800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
(R)-(+)-perillyl alcohol is a much valued supplemental compound with a wide range of agricultural and pharmacological characteristics. The aim of this study was to improve (R)-(+)-perillyl alcohol production using a whole-cell catalytic formula. In this study, we employed plasmids with varying copy numbers to identify an appropriate strain, strain 03. We demonstrated that low levels of alKL provided maximal biocatalyst stability. Upon determination of the optimal conditions, the (R)-(+)-perillyl alcohol yield reached 130 mg/L. For cofactor regeneration, we constructed strain 10, expressing FDH from Candida boidinii, and achieved (R)-(+)-perillyl alcohol production of 230 mg/L. As a result, 1.23 g/L (R)-(+)-perillyl alcohol was transformed in a 5 L fermenter. Our proposed method facilitates an alternative approach to the economical biosynthesis of (R)-(+)-perillyl alcohol.
Collapse
Affiliation(s)
- Chao Sun
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| | - Congxia Xie
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| |
Collapse
|
5
|
Perillyl alcohol and its synthetic derivatives: the rising of a novel class of selective and potent antitumoral compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Chen TC, da Fonseca CO, Levin D, Schönthal AH. The Monoterpenoid Perillyl Alcohol: Anticancer Agent and Medium to Overcome Biological Barriers. Pharmaceutics 2021; 13:2167. [PMID: 34959448 PMCID: PMC8709132 DOI: 10.3390/pharmaceutics13122167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
Collapse
Affiliation(s)
- Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Clovis O. da Fonseca
- Department of Neurological Surgery, Federal Hospital of Ipanema, Rio de Janeiro 22411-020, Brazil;
| | | | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Jacobson BA, Ahmad Z, Chen S, Waldusky G, Dillenburg M, Stoian E, Cambron DA, Patel AJ, Patel MR, Wagner CR, Kratzke RA. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest New Drugs 2021; 39:636-643. [PMID: 33230623 DOI: 10.1007/s10637-020-01036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.
Collapse
Affiliation(s)
- Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Anil J Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
9
|
Khongsti K, Das KB, Das B. MAPK pathway and SIRT1 are involved in the down-regulation of secreted osteopontin expression by genistein in metastatic cancer cells. Life Sci 2020; 265:118787. [PMID: 33249095 DOI: 10.1016/j.lfs.2020.118787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
AIM The regulation of secreted osteopontin (OPN) expression by genistein and its functional sequel in the metastatic cancer cells (MDA-MB-435 and MDA-MB-231) was ascertained. MAIN METHODS Western blot and Real-Time PCR were used to analyse the proteins and mRNA transcripts, respectively. Possible transcriptional regulation of secreted OPN was analyzed by chromatin immunoprecipitation assay, bioinformatics analysis, transfection and luciferase reporter assay. The specific siRNAs and constitutive p-ERKs were used to evaluate the role of the MAPK pathway. The functional sequel of genistein in these cells was analyzed by colony formation-, migration- and invasion- assay. KEY FINDINGS Secreted OPN expression was inhibited (up to ~0.7-fold) by genistein in these cells. Genistein (50 μM) displayed a reduction in the aggressiveness of these cells concerning colony formation rate, migration, and invasion. The p-ERK½ was increased by ~2.5-fold and ~1.5-fold upon 50 μM genistein and 15 μM resveratrol treatments at 24 h, respectively. Knockdown of ERK½ and PD98059, the inhibitor of MEK, promoted secreted OPN expression in vitro in these cells; while, the transfection of the constitutive active ERK2 (L73P and S151D) decreased the secreted OPN expression. Further, silent mating type information regulation 2 homolog 1 (SIRT1) expression in the cells was increased (~1.6-fold) upon genistein treatment (50 μM) likewise with resveratrol (~1.5-fold), an activator for SIRT1. Knockdown of SIRT1 increased OPN mRNA transcripts expression level and secreted OPN protein level in these cells. SIGNIFICANCE MAPK pathway and SIRT1 activation are involved in the regulation of secreted OPN by genistein in these cells.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
11
|
Impact of Eukaryotic Translation Initiation Factors on Breast Cancer: Still Much to Investigate. Cancers (Basel) 2020; 12:cancers12071984. [PMID: 32708122 PMCID: PMC7409344 DOI: 10.3390/cancers12071984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Breast carcinoma (BC) remains one of the most serious health problems. It is a heterogeneous entity, and mainly classified according to receptor status for estrogen (ER), progesterone (PR) and egf (HER2/Neu), as well as the proliferation marker ki67. Gene expression in eukaryotes is regulated at the level of both gene transcription and translation, where eukaryotic initiation factors (eIFs) are key regulators of protein biosynthesis. Aberrant translation results in an altered cellular proteome, and this clearly effects cell growth supporting tumorigenesis. The relationship between various eIFs and BC entities, as well as the related regulatory mechanisms, has meanwhile become a focus of scientific interest. Here, we give an overview on the current research state of eIF function, focusing on BC.
Collapse
|
12
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Wang L, Guo C, Li X, Yu X, Li X, Xu K, Jiang B, Jia X, Li C, Shi D. Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur J Med Chem 2019; 177:153-170. [DOI: 10.1016/j.ejmech.2019.05.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
14
|
Apium Plants: Beyond Simple Food and Phytopharmacological Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apium plants belong to the Apiaceae family and are included among plants that have been in use in traditional medicine for thousands of years worldwide, including in the Mediterranean, as well as the tropical and subtropical regions of Asia and Africa. Some highlighted medical benefits include prevention of coronary and vascular diseases. Their phytochemical constituents consist of bergapten, flavonoids, glycosides, furanocoumarins, furocoumarin, limonene, psoralen, xanthotoxin, and selinene. Some of their pharmacological properties include anticancer, antioxidant, antimicrobial, antifungal, nematocidal, anti-rheumatism, antiasthma, anti-bronchitis, hepatoprotective, appetizer, anticonvulsant, antispasmodic, breast milk inducer, anti-jaundice, antihypertensive, anti-dysmenorrhea, prevention of cardiovascular diseases, and spermatogenesis induction. The present review summarizes data on ecology, botany, cultivation, habitat, medicinal use, phytochemical composition, preclinical and clinical pharmacological efficacy of Apium plants and provides future direction on how to take full advantage of Apium plants for the optimal benefit to mankind.
Collapse
|
15
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
16
|
Batool A, Aashaq S, Andrabi KI. Eukaryotic initiation factor 4E (eIF4E): A recap of the cap-binding protein. J Cell Biochem 2019; 120:14201-14212. [PMID: 31074051 DOI: 10.1002/jcb.28851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5' end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis.
Collapse
Affiliation(s)
- Asiya Batool
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sabreena Aashaq
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Khurshid I Andrabi
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
17
|
Mukhtar YM, Adu-Frimpong M, Xu X, Yu J. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep 2018; 38:BSR20181253. [PMID: 30287506 PMCID: PMC6239267 DOI: 10.1042/bsr20181253] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.
Collapse
Affiliation(s)
- Yusif M Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, P. O. Box 9, Kintampo, Ghana
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P.R. China
| |
Collapse
|
18
|
Chen TC, da Fonseca CO, Schönthal AH. Intranasal Perillyl Alcohol for Glioma Therapy: Molecular Mechanisms and Clinical Development. Int J Mol Sci 2018; 19:E3905. [PMID: 30563210 PMCID: PMC6321279 DOI: 10.3390/ijms19123905] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Intracranial malignancies, such as primary brain cancers and brain-localized metastases derived from peripheral cancers, are particularly difficult to treat with therapeutic agents, because the blood-brain barrier (BBB) effectively minimizes brain entry of the vast majority of agents arriving from the systemic circulation. Intranasal administration of cancer drugs has the potential to reach the brain via direct nose-to-brain transport, thereby circumventing the obstacle posed by the BBB. However, in the field of cancer therapy, there is a paucity of studies reporting positive results with this type of approach. A remarkable exception is the natural compound perillyl alcohol (POH). Its potent anticancer activity was convincingly established in preclinical studies, but it nonetheless failed in subsequent clinical trials, where it was given orally and displayed hard-to-tolerate gastrointestinal side effects. Intriguingly, when switched to intranasal delivery, POH yielded highly promising activity in recurrent glioma patients and was well tolerated. As of 2018, POH is the only intranasally delivered compound in the field of cancer therapy (outside of cancer pain) that has advanced to active clinical trials. In the following, we will introduce this compound, summarize its molecular mechanisms of action, and present the latest data on its clinical evaluation as an intranasally administered agent for glioma.
Collapse
Affiliation(s)
- Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Clovis O da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niterói, RJ 24220, Brazil.
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
19
|
Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The current overview will summarize some of the developments in the area of protein translation, including their relation to the therapeutic targeting of prostate cancer. RECENT FINDINGS Translational control, mediated by the rate-limiting eukaryotic translation initiation factor 4E (eIF4E), drives selective translation of several oncogenic proteins, thereby contributing to tumor growth, metastasis, and treatment resistance in various cancers, including prostate cancer. As an essential regulatory hub, several oncogenic hyperactive signaling pathways appear to converge on eIF4E to promote tumorigenesis. Several approaches that target the eIF4E-dependent protein translation network are being actively studied, and it is likely that some may ultimately emerge as promising anticancer therapeutics. SUMMARY An array of inhibitors has shown promise in targeting specific components of the translational machinery in several preclinical models of prostate cancer. It is hoped that some of these approaches may ultimately have relevance in improving the clinical outcomes of patients with advanced prostate cancer.
Collapse
|
22
|
Abstract
The translation initiation factor eIF4E mediates a rate-limiting process that drives selective translation of many oncongenic proteins such as cyclin D1, survivin and VEGF, thereby contributing to tumour growth, metastasis and therapy resistance. As an essential regulatory hub in cancer signalling network, many oncogenic signalling pathways appear to converge on eIF4E. Therefore, targeting eIF4E-mediated cap-dependent translation is considered a promising anticancer strategy. This paper reviews the strategies that can be used to target eIF4E, highlighting agents that target eIF4E activity at each distinct level.
Collapse
|
23
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
24
|
Nandurkar NS, Zhang J, Ye Q, Ponomareva LV, She QB, Thorson JS. The identification of perillyl alcohol glycosides with improved antiproliferative activity. J Med Chem 2014; 57:7478-84. [PMID: 25121720 PMCID: PMC4161159 DOI: 10.1021/jm500870u] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A facile
route to perillyl alcohol (POH) differential glycosylation
and the corresponding synthesis of a set of 34 POH glycosides is reported.
Subsequent in vitro studies revealed a sugar dependent antiproliferative
activity and the inhibition of S6 ribosomal protein phosphorylation
as a putative mechanism of representative POH glycosides. The most
active glycoside from this cumulative study (4′-azido-d-glucoside, PG9) represents one of the most cytotoxic
POH analogues reported to date.
Collapse
Affiliation(s)
- Nitin S Nandurkar
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | |
Collapse
|
25
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
26
|
eIF4E-Overexpression imparts perillyl alcohol and rapamycin-mediated regulation of telomerase reverse transcriptase. Exp Cell Res 2013; 319:2103-2112. [PMID: 23747720 DOI: 10.1016/j.yexcr.2013.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/17/2022]
Abstract
Translation is mediated partly by regulation of free eukaryotic initiation factor 4E (eIF4E) levels through PI3K-Akt-mTOR signaling. Cancer cells treated with the plant-derived perillyl alcohol (POH) or the mechanistic target of rapamycin (mTOR) inhibitor rapamycin dephosphorylate eIF4E-binding protein (4E-BP1) and attenuate cap-dependent translation. We previously showed in cancer cell lines with elevated eIF4E that POH and rapamycin regulate telomerase activity through this pathway. Here, immortalized Chinese hamster ovary (CHO) control cells and CHO cells with forced eIF4E expression (rb4E) were used to elucidate eIF4E's role in telomerase regulation by POH and rapamycin. Despite 5-fold higher eIF4E amounts in rb4E, telomerase activity, telomerase reverse transcriptase (TERT) mRNA, and TERT protein were nearly equivalent in control and rb4E cells. In control cells, telomerase activity, TERT mRNA and protein levels were unaffected by either compound. In contrast, telomerase activity and TERT protein were both attenuated by either agent in rb4E cells, but without corresponding TERT mRNA decreases indicating a translational/post-translational process. S6K, Akt, and 4E-BP1 were modulated by mTOR mediators only in the presence of increased eIF4E. Thus, eIF4E-overexpression in rb4E cells enables inhibitory effects of POH and rapamycin on telomerase and TERT protein. Importantly, eIF4E-overexpression modifies cellular protein synthetic processes and gene regulation.
Collapse
|
27
|
Sundin T, Peffley DM, Hentosh P. Disruption of an hTERT-mTOR-RAPTOR protein complex by a phytochemical perillyl alcohol and rapamycin. Mol Cell Biochem 2013; 375:97-104. [PMID: 23283642 DOI: 10.1007/s11010-012-1532-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/23/2012] [Indexed: 12/17/2022]
Abstract
We previously demonstrated in prostate cancer cells that a phytochemical-perillyl alcohol-and the mechanistic target of rapamycin (mTOR) inhibitor rapamycin rapidly attenuated telomerase activity. Protein levels of the telomerase catalytic subunit reverse transcriptase (hTERT) were diminished in the absence of an effect on hTERT mRNA, supporting an effect on 4E-BP1 phosphorylation and reduced initiation of protein translation. The decline in hTERT protein did not coincide wholly, however, with loss of telomerase activity suggesting a further level of regulation. We hypothesized that a hTERT-mTOR-S6K (S6 kinase)-Hsp90 (Heat shock protein 90)-Akt complex previously detected in activated NK cells was present in DU145 prostate cancer cells. Furthermore, we postulated that both perillyl alcohol and rapamycin disrupted this complex to control telomerase activity post-translationally. Antibodies directed against either RAPTOR, a binding partner of mTOR, or mTOR itself co-immunoprecipitated Hsp90, hTERT, and S6K confirming a similar TERT complex in prostate cancer cells. Perillyl alcohol or rapamycin caused rapid dissociation of the captured hTERT-mTOR-RAPTOR complex, establishing an additional mechanism by which these agents decrease telomerase activity. These findings provide convincing evidence for mTOR-mediated regulation of hTERT in DU145 cells.
Collapse
Affiliation(s)
- Tabetha Sundin
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, 4608 Hampton Blvd., Norfolk, VA 23529, USA
| | | | | |
Collapse
|
28
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
29
|
The isoprenoid perillyl alcohol inhibits telomerase activity in prostate cancer cells. Biochimie 2012; 94:2639-48. [PMID: 22902867 DOI: 10.1016/j.biochi.2012.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/31/2012] [Indexed: 12/16/2022]
Abstract
Isoprenoids are recognized for their ability to suppress carcinogenic processes in vivo and in vitro. We previously established that the isoprenoid, perillyl alcohol, acted mechanistically on translation of specific proteins through modulation of mechanistic target of rapamycin (mTOR) signaling. Telomerase-the enzyme responsible for immortalizing cells through the addition of telomeric repeats-is de-repressed early in an aspiring cancer cell. Here the effects of biologically-relevant concentrations and short incubations (1-16 h) of perillyl alcohol or the mTOR inhibitor, rapamycin, on telomerase activity were examined in prostate cancer cell lines. A rapid suppression of telomerase activity was observed (from ∼65% to >95%) determined by real-time quantitative telomerase repeat amplification protocol and confirmed by polyacrylamide gel-analysis. Using real-time reverse transcriptase-PCR, we demonstrated that human telomerase reverse transcriptase (hTERT) mRNA levels were unaltered. Western blot analysis revealed that hTERT protein levels decreased in response to perillyl alcohol or rapamycin. This decrease was partially blocked by pretreatment with a proteasome inhibitor MG-132, indicating that proteasomal degradation contributed to the loss of hTERT protein. No change in hTERT phosphorylation at Ser824 was observed, indicating the absence of cellular hTERT protein redistribution. These findings provide evidence for a unique link between nutrient- and macrolide-mediated regulation of mTOR and hTERT, a key enzyme that regulates DNA structure and stability.
Collapse
|
30
|
Abstract
Telomeres are stretches of repeated DNA sequences located at the ends of chromosomes that are necessary to prevent loss of gene-coding DNA regions during replication. Telomerase – the enzyme responsible for immortalising cancer cells through the addition of telomeric repeats – is active in ~90% of human cancers. Telomerase activity is inhibited by various phytochemicals such as isoprenoids, genistein, curcumin, epigallocatechin-3-gallate, resveratrol and others. Human TERT (telomerase reverse transcriptase – the rate-limiting component of telomerase), heat shock protein 90, Akt, p70 S6 kinase (S6K) and mammalian target of rapamycin (mTOR) form a physical and functional complex with one another. The inclusion of Akt, mTOR and S6K in the TERT complex is compelling evidence to support mTOR-mediated control of telomerase activity. This review will define the role of mTOR, the master regulator of protein translation, in telomerase regulation and provide additional insights into the numerous ways in which telomerase activity is hindered by phytochemicals.
Collapse
|
31
|
Pan L, Chai H, Kinghorn AD. The continuing search for antitumor agents from higher plants. PHYTOCHEMISTRY LETTERS 2010; 3:1-8. [PMID: 20228943 PMCID: PMC2836022 DOI: 10.1016/j.phytol.2009.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant secondary metabolites and their semi-synthetic derivatives continue to play an important role in anticancer drug therapy. In this short review, selected single chemical entity antineoplastic agents from higher plants that are currently in clinical trials as cancer chemotherapy drug candidates are described. These compounds are representative of a wide structural diversity. In addition, the approaches taken toward the discovery of anticancer agents from tropical plants in the laboratory of the authors are summarized. The successful clinical utilization of cancer chemotherapeutic agents from higher plants has been evident for about half a century, and, when considered with the promising pipeline of new plant-derived compounds now in clinical trials, this augurs well for the continuation of drug discovery research efforts to elucidate additional candidate substances of this type.
Collapse
Affiliation(s)
| | | | - A. Douglas Kinghorn
- Corresponding author. Tel.: +1-614-247-8094; Fax: +1-614-247-8642. (A. D. Kinghorn)
| |
Collapse
|
32
|
Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 2009; 9:237-49. [PMID: 19275762 DOI: 10.2174/156800909787580999] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large number of novel therapeutics is currently undergoing clinical evaluation for the treatment of prostate cancer, and small molecule signal transduction inhibitors are a promising class of agents. These inhibitors have recently become a standard therapy in renal cell carcinoma and offer significant promise in prostate cancer. Through an understanding of the key pathways involved in prostate cancer progression, a rational drug design can be aimed at the molecules critical to cellular signaling. This may enable administration of selective therapies based on the expression of molecular targets, more appropriately individualizing treatment for prostate cancer patients. One pathway with a prominent role in prostate cancer is the PI3K/Akt/mTOR pathway. Current estimates suggest that PI3K/Akt/mTOR signaling is upregulated in 30-50% of prostate cancers, often through loss of PTEN. Molecular changes in the PI3K/Akt/mTOR signaling pathway have been demonstrated to differentiate benign from malignant prostatic epithelium and are associated with increasing tumor stage, grade, and risk of biochemical recurrence. Multiple inhibitors of this pathway have been developed and are being assessed in the laboratory and in clinical trials, with much attention focusing on mTOR inhibition. Current clinical trials in prostate cancer are assessing efficacy of mTOR inhibitors in combination with multiple targeted or traditional chemotherapies, including bevacizumab, gefitinib, and docetaxel. Completion of these trials will provide substantial information regarding the importance of this pathway in prostate cancer and the clinical implications of its targeted inhibition. In this article we review the data surrounding PI3K/Akt/mTOR inhibition in prostate cancer and their clinical implications.
Collapse
Affiliation(s)
- Todd M Morgan
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|