1
|
Escamilla S, Salas-Lucia F. Thyroid Hormone and Alzheimer Disease: Bridging Epidemiology to Mechanism. Endocrinology 2024; 165:bqae124. [PMID: 39276028 DOI: 10.1210/endocr/bqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The identification of critical factors that can worsen the mechanisms contributing to the pathophysiology of Alzheimer disease is of paramount importance. Thyroid hormones (TH) fit this criterion. Epidemiological studies have identified an association between altered circulating TH levels and Alzheimer disease. The study of human and animal models indicates that TH can affect all the main cellular, molecular, and genetic mechanisms known as hallmarks of Alzheimer disease. This is true not only for the excessive production in the brain of protein aggregates leading to amyloid plaques and neurofibrillary tangles but also for the clearance of these molecules from the brain parenchyma via the blood-brain barrier and for the escalated process of neuroinflammation-and even for the effects of carrying Alzheimer-associated genetic variants. Suboptimal TH levels result in a greater accumulation of protein aggregates in the brain. The direct TH regulation of critical genes involved in amyloid beta production and clearance is remarkable, affecting the expression of multiple genes, including APP (related to amyloid beta production), APOE, LRP1, TREM2, AQP4, and ABCB1 (related to amyloid beta clearance). TH also affects microglia by increasing their migration and function and directly regulating the immunosuppressor gene CD73, impacting the immune response of these cells. Studies aiming to understand the mechanisms that could explain how changes in TH levels can contribute to the brain alterations seen in patients with Alzheimer disease are ongoing. These studies have potential implications for the management of patients with Alzheimer disease and ultimately can contribute to devising new interventions for these conditions.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Alicante 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Alicante 03550, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
| | | |
Collapse
|
2
|
Giolito MV, Bodoirat S, La Rosa T, Reslinger M, Guardia GDA, Mourtada J, Claret L, Joung A, Galante PAF, Penalva LOF, Plateroti M. Impact of the thyroid hormone T3 and its nuclear receptor TRα1 on colon cancer stem cell phenotypes and response to chemotherapies. Cell Death Dis 2024; 15:306. [PMID: 38693105 PMCID: PMC11063186 DOI: 10.1038/s41419-024-06690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .
Collapse
MESH Headings
- Humans
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Thyroid Hormone Receptors alpha/metabolism
- Thyroid Hormone Receptors alpha/genetics
- Caco-2 Cells
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Colonic Neoplasms/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Triiodothyronine/pharmacology
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Camptothecin/pharmacology
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Phenotype
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aldehyde Dehydrogenase 1 Family/metabolism
- Aldehyde Dehydrogenase 1 Family/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Retinal Dehydrogenase/metabolism
- Retinal Dehydrogenase/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Serguei Bodoirat
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Theo La Rosa
- Stem-Cell and Brain Research Institute, U1208 INSERM, USC1361 INRA, 69675, Bron, France
| | - Mathieu Reslinger
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | | | - Jana Mourtada
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Leo Claret
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | - Alain Joung
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelina Plateroti
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France.
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France.
| |
Collapse
|
3
|
Hercbergs A, Lin HY, Mousa SA, Davis PJ. (Thyroid) Hormonal regulation of breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1109555. [PMID: 36714596 PMCID: PMC9874134 DOI: 10.3389/fendo.2022.1109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Thyroid hormone as L-thyroxine (T4) acts nongenomically at physiological concentrations at its cancer cell surface receptor on integrin αvβ3 ('thyrointegrin') to cause cancer cell proliferation. In the case of estrogen receptor (ERα)-positive breast cancer cells, T4 via the integrin promotes ERα-dependent cancer growth in the absence of estrogen. Thus, tumor growth in the post-menopausal patient with ERα-positive cancer may again be ER-dependent because of T4. Additional mechanisms by which T4 may contribute uniquely to aggressive breast cancer behavior-independently of ER-are stimulation of immune checkpoint inhibitor gene expression and of several anti-apoptosis mechanisms. These observations may call for consideration of elimination of host T4 production in breast cancer patients whose response is suboptimal to standard chemotherapy regimens. Euthyroidism in such a setting may be maintained with exogenous 3,3',5-triiodo-L-thyronine (T3).
Collapse
Affiliation(s)
- Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic, Cleveland, OH, United States
| | - Hung-Yun Lin
- Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaker A. Mousa
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- *Correspondence: Paul J. Davis,
| |
Collapse
|
4
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
5
|
Metsu D, Aquilina C, Delobel P, Gandia P, Savagner F, Raymond S, Caron P, Martin-Blondel G. Maraviroc exposure is influenced by exogenous thyrotoxicosis. AIDS 2021; 35:701-703. [PMID: 33620876 DOI: 10.1097/qad.0000000000002754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- David Metsu
- Laboratory of Pharmacokinetics and Toxicology, Purpan Hospital, University Hospital of Toulouse
- INTHERES UMR1436 INRA-ENVT
| | | | - Pierre Delobel
- Department of Infectious Diseases, University Hospital of Toulouse
- Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center
| | - Peggy Gandia
- Laboratory of Pharmacokinetics and Toxicology, Purpan Hospital, University Hospital of Toulouse
- INTHERES UMR1436 INRA-ENVT
| | - Frédérique Savagner
- Biochemistry and Genetic Laboratory, Federative Institute of Biology, CHU Toulouse
- Team 6, Inserm UMR 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), CHU Rangueil
| | - Stéphanie Raymond
- Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center
- Department of Virology, CHU Purpan
| | - Philippe Caron
- Team 6, Inserm UMR 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), CHU Rangueil
- Department of Endocrinology and Metabolic Diseases, Pôle Cardiovascular and Metabolic, Larrey University Hospital, Toulouse, France
| | - Guillaume Martin-Blondel
- Department of Infectious Diseases, University Hospital of Toulouse
- Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center
| |
Collapse
|
6
|
Schwier NC, O'Neal K. Pharmacotherapeutic Management Strategies for Thyroid Disease-Induced Pericarditis. Ann Pharmacother 2019; 54:486-495. [PMID: 31744311 DOI: 10.1177/1060028019889065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: To describe the various pharmacotherapeutic strategies in managing thyroid disease-induced pericarditis (TDIP). Considerations for both hypothyroid-induced and hyperthyroid-induced pericarditis will be discussed. Data Sources: A literature search of MEDLINE, including PubMed, was performed inclusive of all years, using the following search terms: thyroid disease, pericardial diseases, pericarditis, acute pericarditis, cholesterol pericarditis, hypothyroidism, hyperthyroidism, colchicine, corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), aspirin, methimazole, propylthiouracil, and P-glycoprotein. Product monographs were reviewed as well. Study Selection and Data Extraction: Relevant English-language studies and data as well as the most current guidelines for diagnosis and management of thyroid and pericardial diseases were considered. Because of limited data regarding the subject matter, no date range limits were established during literature search. Data Synthesis: It is well documented that thyroid dysfunction can adversely affect cardiovascular function. Additionally, there are published guidelines on the diagnosis and management of pericarditis and, separately, thyroid disease. There are limited data, however, on managing TDIP. The sequela of untreated TDIP can be detrimental. Relevance to Patient Care and Clinical Practice: Strategies on managing TDIP are scarcely reported in the literature. This review provides clinicians with a single reference source for treatment strategies toward managing hypothyroidism-induced and hyperthyroidism-induced pericarditis as well as significant drug interactions that can potentially confound the management of hypothyroidism- and hyperthyroidism-induced pericarditis. Conclusions: Treatment of TDIP involves addressing both the thyroid disease as well as the pericarditis. Along with treatment strategies, clinicians should also consider potential drug-drug and drug-disease interactions that can potentially worsen clinical outcomes.
Collapse
Affiliation(s)
| | - Katherine O'Neal
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
9
|
Öztaş E, Parejo Garcia-Saavedra A, Yanar F, Özçinar B, Aksakal N, Purisa S, Özhan G. P-glycoprotein polymorphism and levothyroxine bioavailability in hypothyroid patients. Saudi Pharm J 2018; 26:274-278. [PMID: 30166928 PMCID: PMC6111188 DOI: 10.1016/j.jsps.2017.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/26/2017] [Indexed: 10/26/2022] Open
Abstract
Objectives P-glycoprotein (P-gp) contributes to the disposition of a wide variety of drugs; therefore, single nucleotide polymorphisms (SNPs) in the P-gp coding gene might affect its activity. It is well known that personalized medicine, instead of empirical treatment, is a clinically important approach for enhancing responses among patients. Indeed, there is a need to evaluate the association between SNPs of P-gp encoded multidrug resistance genes (MDR1, ABCB1), and the dosage requirements of these drugs. In the present study, we evaluated the association between the dosage of Levothyroxine (L-T4) and three common SNPs (C1236T, G2677T/A and C3435T). Methods Genotyping was done using a real-time PCR platform with DNA samples isolated from the venous blood of ninety post thyroidectomy hypothyroid patients. Thyroid hormone levels were measured as routine biochemistry laboratories in the Medical School of Istanbul University. Results In the genotype analysis, the minor allele frequencies were 0.48 for C1236T, 0.51 for G2677T/A, and 0.51 for C3435T. In the haplotype-based analysis, T1236T2677T3435 and C1236G2677C3435 were observed as major haplotypes (50.2 and 32.6%, respectively), in agreement with previous studies. The administered dose of L-T4 to achieve physiological thyroid hormone levels was found to be similar in all genotypes and haplotypes, indicating that there is no significant association between MDR1 polymorphisms and L-T4 doses. Conclusion Because of conflicted previous reports about the genetic contribution of MDR1 polymorphisms to drug disposition, further studies with large numbers of participants are required to clarify this influence.
Collapse
Affiliation(s)
- Ezgi Öztaş
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| | | | - Fatih Yanar
- Istanbul University, Faculty of Medicine, Department of General Surgery, 34093 Fatih, Istanbul, Turkey
| | - Beyza Özçinar
- Istanbul University, Faculty of Medicine, Department of General Surgery, 34093 Fatih, Istanbul, Turkey
| | - Nihat Aksakal
- Istanbul University, Faculty of Medicine, Department of General Surgery, 34093 Fatih, Istanbul, Turkey
| | - Sevim Purisa
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34116 Beyazit, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| |
Collapse
|
10
|
Kameyama N, Kobayashi K, Shimizu S, Yamasaki Y, Endo M, Hashimoto M, Furihata T, Chiba K. Involvement of ESE-3, epithelial-specific ETS factor family member 3, in transactivation of the ABCB1 gene via pregnane X receptor in intestine-derived LS180 cells but not in liver-derived HepG2 cells. Drug Metab Pharmacokinet 2016; 31:340-348. [PMID: 27567379 DOI: 10.1016/j.dmpk.2016.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/26/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023]
Abstract
Pregnane X receptor (PXR) is involved in the transactivation of ABCB1 gene by rifampicin (RIF). However, we found that increase in ABCB1 mRNA by RIF was observed in LS180 cells but not in HepG2 cells. Since both cell lines expressed PXR equally, we hypothesized that a factor(s) other than PXR is responsible for PXR-mediated transactivation of the ABCB1 gene. Reporter activities of a distal enhancer module containing direct repeat 4 (DR4) motifs were increased by RIF in LS180 cells but not in HepG2 cells. Mutation of the DR4 motifs diminished the increase in reporter activities in LS180 cells. Gene subtraction showed that epithelial-specific ETS factor 3 (ESE-3) is a transcription factor enriched in LS180 cells compared to HepG2 cells. When ESE-3 and PXR were co-expressed in HepG2 cells, reporter activities were increased by RIF, which were completely abolished by mutation of DR4 motifs. Chromatin immunoprecipitation assays showed specific binding of ESE-3 to the region containing the DR4 motifs of the ABCB1 gene. Finally, knock-down of ESE-3 in LS180 cells resulted in a decrease in the induction of ABCB1 mRNA. These results suggest that ESE-3 is a factor responsible for PXR-mediated transactivation of the ABCB1 gene by RIF in LS180 cells.
Collapse
Affiliation(s)
- Naoya Kameyama
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Shoko Shimizu
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuki Yamasaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mika Endo
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mari Hashimoto
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Yang SD, Zhu WJ, Zhu QL, Chen WL, Ren ZX, Li F, Yuan ZQ, Li JZ, Liu Y, Zhou XF, Liu C, Zhang XN. Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J Biomed Mater Res B Appl Biomater 2016; 105:1114-1125. [PMID: 27008163 DOI: 10.1002/jbm.b.33636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/04/2016] [Accepted: 01/31/2016] [Indexed: 12/13/2022]
Abstract
The development of effective and stable carriers of small interfering RNA (siRNA) is important for treating cancer with multidrug resistance (MDR). We developed a new gene and drug co-delivery system and checked its characteristics. Low-density lipoprotein (LDL) was coupled with N-succinyl chitosan (NSC) Lipoic acid (LA) micelles and co-delivered MDR1 siRNA and paclitaxel (PTX-siRNA/LDL-NSC-LA) to enhance antitumor effects by silencing the MDR gene of tumors (Li et al., Adv Mater 2014;26:8217-8224). In our study, we developed a new type of containing paclitaxel-loaded micelles and siRNA-loaded LDL nanoparticle. This "binary polymer" is pH and reduction dual-sensitive core-crosslinked micelles. PTX-siRNA/LDL-NSC-LA had an average particle size of (171.6 ± 6.42) nm, entrapment efficiency of (93.92 ± 1.06) %, and drug-loading amount of (12.35% ± 0.87) %. In vitro, MCF-7 cells, high expressed LDL receptor, were more sensitive to this delivery system than to taxol® and cell activity was inhibited significantly. Fluorescence microscopy showed that PTX-siRNA/LDL-NSC-LA was uptaken very conveniently and played a key role in antitumor activity. PTX-siRNA/LDL-NSC-LA protected the siRNA from degradation by macrophage phagocytosis and evidently down-regulated the level of mdr1 mRNA as well as the expression of P-gp. We tested the target ability of PTX-siRNA/LDL-NSC-LA in vivo in tumor-bearing nude mice. Results showed that this system could directly deliver siRNA and PTX to cancer cells. Thus, new co-delivering siRNA and antitumor drugs should be explored for solving MDR in cancer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1114-1125, 2017.
Collapse
Affiliation(s)
- Shu-Di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Wen-Jing Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Qiao-Ling Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China.,Nanjing Gulou Hospital, Nanjing, 210029, People's Republic of China
| | - Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhao-Xiang Ren
- Jiangsu Key Laboratory for Translational Research and Therapy for Neuropsycho-disoders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xiao-Feng Zhou
- College of Radiological Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China.,Changshu Hospital of Traditional Chinese Medicine, Changshu, 215500, People's Republic of China
| | - Chun Liu
- The Hospital of Suzhou People's Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
12
|
Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev Mol Med 2015; 17:e10. [DOI: 10.1017/erm.2015.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) exerts important actions on cellular energy metabolism, accelerating O2consumption with consequent reactive oxygen species (ROS) generation and redox signalling affording cell protection, a response that is contributed by redox-independent mechanisms. These processes underlie genomic and non-genomic pathways, which are integrated and exhibit hierarchical organisation. ROS production led to the activation of the redox-sensitive transcription factors nuclear factor-κB, signal transducer and activator of transcription 3, activating protein 1 and nuclear factor erythroid 2-related factor 2, promoting cell protection and survival by TH. These features involve enhancement in the homeostatic potential including antioxidant, antiapoptotic, antiinflammatory and cell proliferation responses, besides higher detoxification capabilities and energy supply through AMP-activated protein kinase upregulation. The above aspects constitute the molecular basis for TH-induced preconditioning of the liver that exerts protection against ischemia-reperfusion injury, a strategy also observed in extrahepatic organs of experimental animals and with other types of injury, which awaits application in the clinical setting. Noteworthy, re-adjusting TH to normal levels results in several beneficial effects; for example, it lengthens the cold storage time of organs for transplantation from brain-dead donors; allows a superior neurological outcome in infants of <28 weeks of gestation; reduces the cognitive side-effects of lithium and improves electroconvulsive therapy in patients with bipolar disorders.
Collapse
|
13
|
Thyroid hormone and P-glycoprotein in tumor cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:168427. [PMID: 25866761 PMCID: PMC4383522 DOI: 10.1155/2015/168427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3) at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.
Collapse
|
14
|
Hegedüs C, Telbisz Á, Hegedűs T, Sarkadi B, Özvegy-Laczka C. Lipid regulation of the ABCB1 and ABCG2 multidrug transporters. Adv Cancer Res 2015; 125:97-137. [PMID: 25640268 DOI: 10.1016/bs.acr.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This chapter deals with the interactions of two medically important multidrug ABC transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics and are involved in cancer chemotherapy resistance. Therefore, the exploration of their mechanism of action has major therapeutic consequences. As discussed here in detail, both ABCB1 and ABCG2 are significantly affected by various lipid compounds especially those residing in their close proximity in the plasma membrane. ABCB1 is capable of transporting lipids and lipid derivatives, and thus may alter the general membrane composition by "flopping" membrane lipid constituents, while there is no such information regarding ABCG2. Still, both ABCB1 and ABCG2 show complex interactions with a variety of lipid molecules, and the transporters are significantly modulated by cholesterol and cholesterol derivatives at the posttranslational level. In this chapter, we explore the molecular details of the direct transporter-lipid interactions, the potential role of lipid-sensor domains within the proteins, as well as the application of experimental site-directed mutagenesis, detailed structural studies, and in silico modeling for examining these interactions. We also discuss the regulation of ABCB1 and ABCG2 expression at the transcriptional level, occurring through nuclear receptors involved in lipid sensing. The better understanding of lipid interactions with these medically important MDR-ABC transporters may significantly improve further drug development and clinical treatment options.
Collapse
Affiliation(s)
- Csilla Hegedüs
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- MTA-SE Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA. Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Front Endocrinol (Lausanne) 2014; 5:240. [PMID: 25628605 PMCID: PMC4290672 DOI: 10.3389/fendo.2014.00240] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3'-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- *Correspondence: Paul J. Davis, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA e-mail:
| | | | | | - John T. Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | | | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Osnat Ashur-Fabian
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- Department of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
16
|
Cornejo P, Vargas R, Videla LA. Nrf2-regulated phase-II detoxification enzymes and phase-III transporters are induced by thyroid hormone in rat liver. Biofactors 2013; 39:514-21. [PMID: 23554160 DOI: 10.1002/biof.1094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/28/2012] [Indexed: 01/09/2023]
Abstract
Thyroid hormone (T₃)-induced calorigenesis triggers the hepatic production of reactive oxygen species (ROS) and redox-sensitive nuclear transcription factor erythroid 2-related factor 2 (Nrf2) activation. The aim of this study was to test the hypothesis that in vivo T₃ administration upregulates the expression of phase II and III detoxification proteins that is controlled by Nrf2. Male Sprague-Dawley rats were given a single intraperitoneal dose of 0.1 mg T₃/kg or T₃ vehicle (controls). After treatment, rectal temperature of the animals, liver Nrf2 DNA binding (EMSA), protein levels of epoxide hydrolase 1 (Eh1), NADPH-quinone oxidoreductase 1 (NQO1), glutathione-S-transferases Ya (GST Ya) and Yp (GST Yp), and multidrug resistance-associated proteins 2 (MRP-2) and 4 (MRP-4) (Western blot), and MRP-3 (RT-PCR) were determined at different times. T₃ significantly rose the rectal temperature of the animals in the time period studied, concomitantly with increases (P < 0.05) of liver Nrf2 DNA binding at 1 and 2 h after treatment, which was normalized at 4-12 h. Within 1-2 h after T₃ treatment, liver phase II enzymes Eh1, NQO1, GST Ya, and GST Yp were enhanced (P < 0.05) as did phase III transporters MRP-2 and MRP-3, whereas MRP-4 remained unchanged. In conclusion, enhancement of liver Nrf2 DNA binding elicited by in vivo T₃ administration is associated with upregulation of the expression of detoxification and drug transport proteins. These changes, in addition to antioxidant protein induction previously observed, may represent cytoprotective mechanisms underlying T₃ preconditioning against liver injury mediated by ROS and chemical toxicity.
Collapse
Affiliation(s)
- Pamela Cornejo
- Faculty of Medicine, Diego Portales University, Santiago, Chile
| | | | | |
Collapse
|
17
|
Saeki M, Kurose K, Hasegawa R, Tohkin M. Functional analysis of genetic variations in the 5'-flanking region of the human MDR1 gene. Mol Genet Metab 2011; 102:91-8. [PMID: 20855224 DOI: 10.1016/j.ymgme.2010.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 02/02/2023]
Abstract
P-glycoprotein (P-gp), the product of the MDR1 gene, shows large interindividual variations in expression, which leads to differences in the pharmacokinetics of the substrate drugs. The functions of single nucleotide polymorphisms located in the nuclear receptor-responsive element of the 5'-flanking region in the human MDR1 gene were analyzed in order to clarify the mechanism underlying the interindividual variation in P-gp expression. Electrophoretic mobility shift assays revealed that the -7833C>T substitution in the nuclear receptor-responsive region of MDR1 decreases the binding affinities of four nuclear receptors to their responsive elements: vitamin D receptor (VDR), thyroid hormone receptor (TR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR). A reporter gene assay revealed that the C-to-T substitution at -7833 also reduces the transcriptional activation of MDR1 by VDR, TRβ, CAR, and PXR. However, another SNP (-1211T>C substitution), which results in the formation of a xenobiotic responsive element-like sequence and a hypoxia responsive element-like sequence, failed to affect the aryl hydrocarbon receptor-dependent and hypoxia-induced transcriptional activation of MDR1. Although the frequency of the -7833C>T substitution in MDR1 is relatively low, the SNP is crucial because it may alter the pharmacokinetics of P-gp substrates in a small subset of the population.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Base Sequence
- Constitutive Androstane Receptor
- Electrophoretic Mobility Shift Assay
- Genes, Reporter
- Humans
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Polynucleotides/metabolism
- Pregnane X Receptor
- Protein Binding
- Receptors, Calcitriol/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Thyroid Hormone Receptors beta/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mayumi Saeki
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
18
|
Burk O, Brenner SS, Hofmann U, Tegude H, Igel S, Schwab M, Eichelbaum M, Alscher MD. The Impact of Thyroid Disease on the Regulation, Expression, and Function of ABCB1 (MDR1/P Glycoprotein) and Consequences for the Disposition of Digoxin. Clin Pharmacol Ther 2010; 88:685-94. [DOI: 10.1038/clpt.2010.176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Identification of the functional vitamin D response elements in the human MDR1 gene. Biochem Pharmacol 2008; 76:531-42. [PMID: 18602086 DOI: 10.1016/j.bcp.2008.05.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 12/19/2022]
Abstract
P-glycoprotein, encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. The expression of MDR1 is induced by a variety of compounds, of which 1alpha,25-dihydroxyvitamin D(3) is known to be an effective inducer. However, it remains unclear how 1alpha,25-dihydroxyvitamin D(3) regulates the expression of MDR1. In this study, we demonstrated that the vitamin D receptor (VDR) induces MDR1 expression in a 1alpha,25-dihydroxyvitamin D(3)-dependent manner. Luciferase assays revealed that the region between -7.9 and -7.8k bp upstream from the transcription start site of the MDR1 is responsible for the induction by 1alpha,25-dihydroxyvitamin D(3). Electrophoretic mobility shift assays revealed that several binding sites for the VDR/retinoid X receptor alpha (RXRalpha) heterodimer are located between the -7880 and -7810 bp region, to which the three molecules of VDR/RXRalpha are able to simultaneously bind with different affinities. Luciferase assays using mutated constructs revealed that the VDR-binding sites of DR3, DR4(I), MdC3, and DR4(III) contribute to the induction, indicating that these binding sites act as vitamin D response elements (VDREs). The contribution of each VDRE to the inducibility was different for each response element. An additive effect of the individual VDREs on induced luciferase activity by 1alpha,25-dihydroxyvitamin D(3) was also observed. These results indicate that the induction of MDR1 by 1alpha,25-dihydroxyvitamin D(3) is mediated by VDR/RXRalpha binding to several VDREs located between -7880 and -7810bp, in which every VDRE additively contributes to the 1alpha,25-dihydroxyvitamin D(3) response.
Collapse
|