1
|
Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H. The Neuroprotective Role of Fisetin in Different Neurological Diseases: a Systematic Review. Mol Neurobiol 2023; 60:6383-6394. [PMID: 37453993 DOI: 10.1007/s12035-023-03469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Xiangwen Tang
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Peng Deng
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Chao Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Huard CA, Gao X, Dey Hazra ME, Dey Hazra RO, Lebsock K, Easley JT, Millett PJ, Huard J. Effects of Fisetin Treatment on Cellular Senescence of Various Tissues and Organs of Old Sheep. Antioxidants (Basel) 2023; 12:1646. [PMID: 37627641 PMCID: PMC10451965 DOI: 10.3390/antiox12081646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other vital organs in old sheep, a more translational model. Female sheep 6-7 years old (N = 6) were treated with 100 mg/kg fisetin or vehicle alone on two consecutive days a week for 8 weeks. All vital organs were harvested at the time of sacrifice. Histology, immunofluorescence staining, and RT-Q-PCR were performed on different regions of brain tissues and other organs. Our results indicated that fisetin treatment at the current regimen did not affect the general morphology of the brain. The presence of senescent cells in both the cerebral brain cortex and cerebellum and non-Cornu Ammonis (CA) area of the hippocampus was detected by senescent-associated β-galactosidase (SA-β-Gal) staining and GL13 (lipofuscin) staining. The senescent cells detected were mainly neurons in both gray and white matter of either the cerebral brain cortex, cerebellum, or non-CA area of the hippocampus. Very few senescent cells were detected in the neurons of the CA1-4 area of the hippocampus, as revealed by GL13 staining and GLB1 colocalization with NEUN. Fisetin treatment significantly decreased the number of SA-β-Gal+ cells in brain cortex white matter and GL13+ cells in the non-CA area of the hippocampus, and showed a decreasing trend of SA-β-Gal+ cells in the gray matter of both the cerebral brain cortex and cerebellum. Furthermore, fisetin treatment significantly decreased P16+ and GLB1+ cells in neuronal nuclear protein (NEUN)+ neurons, glial fibrillary acidic protein (GFAP)+ astrocytes, and ionized calcium binding adaptor molecule 1 (IBA1)+ microglia cells in both gray and white matter of cerebral brain cortex. Fisetin treatment significantly decreased GLB1+ cells in microglia cells, astrocytes, and NEUN+ neurons in the non-CA area of the hippocampus. Fisetin treatment significantly decreased plasma S100B. At the mRNA level, fisetin significantly downregulated GLB1 in the liver, showed a decreasing trend in GLB1 in the lung, heart, and spleen tissues, and significantly decreased P21 expression in the liver and lung. Fisetin treatment significantly decreased TREM2 in the lung tissues and showed a trend of downregulation in the liver, spleen, and heart. A significant decrease in NRLP3 in the liver was observed after fisetin treatment. Finally, fisetin treatment significantly downregulated SOD1 in the liver and spleen while upregulating CAT in the spleen. In conclusion, we found that senescent cells were widely present in the cerebral brain cortex and cerebellum and non-CA area of the hippocampus of old sheep. Fisetin treatment significantly decreased senescent neurons, astrocytes, and microglia in both gray and white matter of the cerebral brain cortex and non-CA area of the hippocampus. In addition, fisetin treatment decreased senescent gene expressions and inflammasomes in other organs, such as the lung and the liver. Fisetin treatment represents a promising therapeutic strategy for age-related diseases.
Collapse
Affiliation(s)
- Charles A. Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Maria E. Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Rony-Orijit Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
- Department for Shoulder and Elbow Surgery, Center for Musculoskeletal Surgery, Charite-University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 14195 Berlin, Germany
| | - Kimberly Lebsock
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Peter J. Millett
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| |
Collapse
|
3
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
5
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
6
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
7
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
8
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
9
|
Yao X, Li L, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp Ther Med 2019; 19:1343-1355. [PMID: 32010308 PMCID: PMC6966137 DOI: 10.3892/etm.2019.8328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fibromyalgia (FM) is a chronic complex musculoskeletal disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep disturbance, memory defects and mood changes. Fisetin, a plant flavonoid polyphenol, has been reported to possess potent antioxidant, antinociceptive and neuroprotective activities. The present study aimed to evaluate the efficacy of fisetin against reserpine-induced FM (RIF) in rats. RIF was induced in male Wistar rats (180–220 gm) using reserpine (1 mg/kg; subcutaneous; once daily for 3 consecutive days) and the rats were treated with fisetin (5, 10 and 25 mg/kg) for 21 days. Various behavioral, biochemical and molecular parameters were evaluated. Administration of reserpine induced allodynia, hyperalgesia and depression, which were significantly ameliorated (P<0.05) by fisetin (10 and 25 mg/kg), as reflected by an increase in paw and tail withdrawal latency, increased paw withdrawal threshold, and decreased immobility time. Reserpine led to decreased biogenic amine levels [5-hydroxytryptamine (5-HT), noradrenaline (NA) and dopamine (DA)] and increased the ratio to their metabolite 3,4-dihydroxyphenylacetic acid. 5-hydroxyindoleacetic acid in the spinal cord, thalamus and prefrontal cortex was significantly decreased (P<0.05) by fisetin. Immunohistological analysis of brain tissue revealed that fisetin significantly inhibited (P<0.05) reserpine-induced depletion of 5-HT. It also significantly inhibited (P<0.05) elevated oxido-nitrosative stress and reactive oxygen species (ROS) levels, as analyzed by flow cytometry in RIF rats. Fisetin exerts its antinociceptive and anti-depressive potential via modulation of decreased levels of biogenic amines (5-HT, NA and DA), elevated oxido-nitrosative stress and ROS to ameliorate allodynia, hyperalgesia, and depression in experimental RIF.
Collapse
Affiliation(s)
- Xianli Yao
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Li Li
- Encephalopathy Department, The Traditional Chinese Medicine Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Anwesha A Mukherjee-Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| |
Collapse
|
10
|
Chen YP, Sivalingam K, Shibu MA, Peramaiyan R, Day CH, Shen CY, Lai CH, Chen RJ, Viswanadha VP, Chen YF, Huang CY. Protective effect of Fisetin against angiotensin II-induced apoptosis by activation of IGF-IR-PI3K-Akt signaling in H9c2 cells and spontaneous hypertension rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:1-8. [PMID: 30668312 DOI: 10.1016/j.phymed.2018.09.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Fisetin, a polyphenolic compound, has drawn notable attention owing to its antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. However, the cardiac effects of fisetin are not clear yet. HYPOTHESIS The aim of the present study is to examine the cardioprotective effect of fisetin against Ang-II induced apoptosis in H9c2 cells and in spontaneous hypertensive rats (SHR). METHODS/STUDY DESIGN The in vitro protective effect of fisetin was evaluated after the cells were treated with fisetin (50 µM/ml/ 24 h) for 2 h prior or after Ang-II administration to induce apoptosis. For in vivo experiments, SHRs were orally administered with fisetin (10 mg/kg) twice a week for 6 weeks. Cellular apoptosis was analyzed by TUNEL staining assay and the modulation in the expression levels of proteins involved in apoptosis and cell survival were determined by western blotting. RESULTS Our results demonstrate the potent cardioprotective efficacy of fisetin against Ang-II induced apoptosis in H9c2 cells and in SHR models. Fisetin administration reduced the apoptotic nuclei considerably And reduced the expression of apoptotic proteins such as TNF- α, Fas L, FADD, Cleaved caspase-3 and Cleaved PARP and increased the cell survival and anti-apoptotic proteins like Bcl-2, Bcl-xL, p-IGF1R, p-PI3K and p-AKT in both in vitro and in vivo models. CONCLUSION In conclusion, the results of the present study reveal that fisetin activates the IGF-IR-dependent p-PI3K/p-Akt survival signaling pathway and suppresses the caspase dependent apoptosis.
Collapse
Affiliation(s)
- Yeh-Peng Chen
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan; Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kalaiselvi Sivalingam
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Rajendran Peramaiyan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 40402, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, 91202, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Ya-Fang Chen
- Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, 40705, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 40402, Taiwan; School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
11
|
Abstract
Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.
Collapse
|
12
|
Lin KH, Shibu MA, Peramaiyan R, Chen YF, Shen CY, Hsieh YL, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. Bioactive flavone fisetin attenuates hypertension associated cardiac hypertrophy in H9c2 cells and in spontaneously hypertension rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Boyina HK, Jerald MK, Bharatraj DK, Diwan PV. Influence of fisetin combined with hesperidin on chronic mild hyperhomocysteinemia induced cognitive dysfunction and oxidative stress in wistar rats. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang Y, Wang B, Lu J, Shi H, Gong S, Wang Y, Hamdy RC, Chua BHL, Yang L, Xu X. Fisetin provides antidepressant effects by activating the tropomyosin receptor kinase B signal pathway in mice. J Neurochem 2017; 143:561-568. [PMID: 28945929 DOI: 10.1111/jnc.14226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Depression has been associated with a low-grade chronic inflammatory state, suggesting a potential therapeutic role for anti-inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti-inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site-1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Jiaqi Lu
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Siyi Gong
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Yufan Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Ronald C Hamdy
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Balvin H L Chua
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
15
|
Hemanth Kumar B, Dinesh Kumar B, Diwan PV. Hesperidin, a citrus flavonoid, protects against l-methionine-induced hyperhomocysteinemia by abrogation of oxidative stress, endothelial dysfunction and neurotoxicity in Wistar rats. PHARMACEUTICAL BIOLOGY 2017; 55:146-155. [PMID: 27677544 PMCID: PMC7011910 DOI: 10.1080/13880209.2016.1231695] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hesperidin (HSP), a flavanoglycone found in citrus fruits, has antioxidant, anti-inflammatory and neuroprotective properties. OBJECTIVE This study evaluates the protective effect of HSP on l-methionine-induced hyperhomocysteinemia (HHcy) in rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into seven groups as DMSO, l-methionine, HSP (25, 50 and 100 mg/kg), HSP-per se (100 mg/kg) and donepezil (0.1 mg/kg). HHcy was induced by oral administration of l-methionine (1.7 g/kg) for 32 days. From the 14th day of study HSP (25, 50 and 100 mg/kg) and donepezil was administered orally to l-methionine-treated rats. Cognitive impairment induced by HHcy was determined using the Morris water maze (MWM) and Y-maze on video tracking system (28th-32nd day). Different biomarkers of HHcy in serum and brain and vascular reactivity were evaluated and histopathology (thoracic aorta and brain) was done. RESULTS HSP (100 mg/kg) treatment in l-methionine-treated rats exhibited significant (p < 0.001) dose-dependent activity and reduced behavioural deficits, brain acetylcholinesterase (25.99 ± 2.36 versus 10.73 ± 1.26 μmoles/mg), brain lipid peroxidation (15.25 ± 1.65 versus 6.18 ± 0.74 nM/mg), serum homocysteine (Hcy) (22.37 ± 0.30 versus 11.01 ± 1.01 μg/mL) and serum cholesterol (182.7 ± 2.15 versus 101.5 ± 2.76 mg/dL) and increased brain antioxidant levels. HSP significantly (p < 0.001) reduced endothelial dysfunction (ED) by abolishing the effect of l-methionine on acetylcholine-induced endothelial-dependent relaxation and increased serum nitrite and vascular nitric oxide bioavailability along with the restoration of histological aberrations. CONCLUSION HSP exerts a protective effect on HHcy by abrogating oxidative stress, ED and neurotoxicity.
Collapse
Affiliation(s)
- B. Hemanth Kumar
- Department of Pharmacology, Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India
- Pharmaceutical Sciences, Research and Development cell, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - B. Dinesh Kumar
- Food and Drug Toxicology Research Centre (FDTRC), National Institute of Nutrition (ICMR), Hyderabad, Telangana, India
| | - Prakash V. Diwan
- Department of Pharmacology, Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India
- Maratha Mandal Research Center, Belgaum, Karnataka, India
| |
Collapse
|
16
|
Yen JH, Wu PS, Chen SF, Wu MJ. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells. Int J Mol Sci 2017; 18:ijms18040852. [PMID: 28420170 PMCID: PMC5412436 DOI: 10.3390/ijms18040852] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. METHODS Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. RESULTS Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Shan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Shu-Fen Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
17
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Hemanth Kumar B, Arun Reddy R, Mahesh Kumar J, Dinesh Kumar B, Diwan PV. Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia. Can J Physiol Pharmacol 2016; 95:32-42. [PMID: 27901381 DOI: 10.1139/cjpp-2016-0147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.
Collapse
Affiliation(s)
- Boyina Hemanth Kumar
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,b Center for Pharmaceutical Sciences and Research and Development Cell, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ravula Arun Reddy
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,c Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Jerald Mahesh Kumar
- d Animal House Facility, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - B Dinesh Kumar
- e National Institute of Nutrition (ICMR), Food & Drug Toxicology Research Centre (FDTRC), Hyderabad, Telangana 500007, India
| | - Prakash V Diwan
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,f Maratha Mandal Central Research Laboratory, Belagavi-590010, Karnataka, India
| |
Collapse
|
19
|
Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels. Brain Res 2016; 1639:132-48. [PMID: 26972528 DOI: 10.1016/j.brainres.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/13/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.
Collapse
|
20
|
Fisetin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:213-244. [DOI: 10.1007/978-3-319-41334-1_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Kontoghiorghe CN, Kolnagou A, Kontoghiorghes GJ. Phytochelators Intended for Clinical Use in Iron Overload, Other Diseases of Iron Imbalance and Free Radical Pathology. Molecules 2015; 20:20841-72. [PMID: 26610453 PMCID: PMC6332094 DOI: 10.3390/molecules201119725] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
Iron chelating drugs are primarily and widely used in the treatment of transfusional iron overload in thalassaemia and similar conditions. Recent in vivo and clinical studies have also shown that chelators, and in particular deferiprone, can be used effectively in many conditions involving free radical damage and pathology including neurodegenerative, renal, hepatic, cardiac conditions and cancer. Many classes of phytochelators (Greek: phyto (φυτό)—plant, chele (χηλή)—claw of the crab) with differing chelating properties, including plant polyphenols resembling chelating drugs, can be developed for clinical use. The phytochelators mimosine and tropolone have been identified to be orally active and effective in animal models for the treatment of iron overload and maltol for the treatment of iron deficiency anaemia. Many critical parameters are required for the development of phytochelators for clinical use including the characterization of the therapeutic targets, ADMET, identification of the therapeutic index and risk/benefit assessment by comparison to existing therapies. Phytochelators can be developed and used as main, alternative or adjuvant therapies including combination therapies with synthetic chelators for synergistic and or complimentary therapeutic effects. The development of phytochelators is a challenging area for the introduction of new pharmaceuticals which can be used in many diseases and also in ageing. The commercial and other considerations for such development have great advantages in comparison to synthetic drugs and could also benefit millions of patients in developing countries.
Collapse
Affiliation(s)
- Christina N Kontoghiorghe
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus.
| | - Annita Kolnagou
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus.
| | - George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus.
| |
Collapse
|
22
|
Abstract
It is becoming increasingly clear that neurological diseases are multi-factorial involving disruptions in multiple cellular systems. Thus, while each disease has its own initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological diseases. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small (< 900 daltons) molecules that have multiple biological activities relevant to the maintenance of brain function. We have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. This wide range of actions suggests that fisetin has the ability to reduce the impact of age-related neurological diseases on brain function.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037,
| |
Collapse
|
23
|
Troxerutin inhibits 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced hepatocyte apoptosis by restoring proteasome function. Toxicol Lett 2015; 233:246-57. [DOI: 10.1016/j.toxlet.2015.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/30/2014] [Accepted: 01/25/2015] [Indexed: 12/25/2022]
|
24
|
Williams DA, Zaidi SA, Zhang Y. 5-Hydroxy-2-(2-phenylethyl)chromone (5-HPEC): a novel non-nitrogenous ligand for 5-HT2B receptor. Bioorg Med Chem Lett 2014; 24:1489-92. [PMID: 24582985 PMCID: PMC4003898 DOI: 10.1016/j.bmcl.2014.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 01/18/2023]
Abstract
Chromones are a class of natural products found in almost every known terrestrial plant with over 4000 naturally occurring derivatives having been isolated and structurally elucidated. Recently, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC), isolated from Imperata cylindrical, showed neuroprotective activity against glutamate induced excitotoxicity in primary cultures of rat cortical cells. In comparison to other naturally occurring neuroprotective chromones, 5-HPEC contains fewer hydroxyl groups. Here we report our most recent characterization on this interesting natural product against a number of CNS receptors for the purpose to identify the potential molecular targets that may be related to its biological activity. Based on our studies, including radiobinding assays, calcium flux functional assays and molecular modeling studies, 5-HPEC may represent a type of novel nonnitrogenous ligands to the 5-HT2B receptor.
Collapse
Affiliation(s)
- Dwight A Williams
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, United States.
| | - Saheem A Zaidi
- Department of Medicinal Chemistry, Virginia Commonwealth University, BioTech One, Suite 205, 800 E. Leigh St., PO Box 980540, Richmond, VA 23298-0540, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, BioTech One, Suite 205, 800 E. Leigh St., PO Box 980540, Richmond, VA 23298-0540, United States.
| |
Collapse
|
25
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
26
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 2013; 22:863-80. [PMID: 23642183 DOI: 10.1517/13543784.2013.794783] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Natural polyphenols, the non-essential micronutrients, found in array of plant products, are known to affect various physiological and biochemical functions in the body. Studies have shown the protective effect of these polyphenols in different neurological and mental disorders. These polyphenols modulate monoaminergic neurotransmission in the brain and thus possess antidepressant-like activity at least in animal models of depression. AREAS COVERED The present review discusses the use of these natural polyphenols in the treatment of major depression. The review article discusses the antidepressant potential of some important polyphenols such as amentoflavone, apigenin, chlorogenic acid, curcumin, ferulic acid, hesperidin, rutin, quercetin, naringenin, resveratrol, ellagic acid, nobiletin and proanthocyanidins. The mechanism of action of these polyphenols in the treatment of major depression is also discussed in detail. EXPERT OPINION There is an exciting prospect in the discovery of natural polyphenols as therapeutic agents in the treatment of major depression.
Collapse
Affiliation(s)
- Lokesh Pathak
- Gujarat Forensic Sciences University, Institute of Research & Development, DFS Headquarters, Sector 18-A, Gandhinagar, Gujarat-382007, India
| | | | | |
Collapse
|
28
|
Palazzolo G, Horvath P, Zenobi-Wong M. The flavonoid isoquercitrin promotes neurite elongation by reducing RhoA activity. PLoS One 2012; 7:e49979. [PMID: 23209630 PMCID: PMC3510166 DOI: 10.1371/journal.pone.0049979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neurite formation and synaptic patterning are fundamental to the development of a functional nervous system. Flavonoids are natural molecules known for having beneficial effects on brain health through diverse molecular pathways. Cytoskeletal changes occurring during neuritogenesis and synapse formation often involve Rho GTPases. Here we hypothesized that the flavonoid isoquercitrin promotes neuronal differentiation through Rho signalling. METHODOLOGY/PRINCIPAL FINDINGS We performed time lapse imaging of NG108-15 cells during incubation with/without isoquercitrin. Isoquercitrin stimulated extensive neurites enriched in the synaptic vesicle protein synaptotagmin-1. Neurite extension was augmented by the ROCK inhibitor Y-27632 suggesting an inactivation of RhoA/Rho kinase as the mechanism. To test this, we first measured the dose-dependent effect of isoquercitrin on RhoA activity and found a 47% reduction in RhoA activity at concentrations which induced neurites (≥40 µM). Secondly, we tested the ability of isoquercitrin to rescue the neural phenotype in a model of RhoA-induced neurite retraction and found that 40 µM isoquercitrin added to cultures previously treated with the RhoA activator calpeptin produced significantly more neurite length/cell than calpeptin alone. Finally, we tested the hypothesis that isoquercitrin may affect RhoA localization preventing the translocation to the plasma membrane. Unexpectedly, immunolocalization studies showed that RhoA was present in nuclear compartments of control NG108-cells, but underwent translocation to the cytoplasm upon treatment with isoquercitrin. DNA microarrays and reverse transcription - quantitative PCR (RT-qPCR) revealed differences in global gene expression of Rho GTPase family members. These data taken together indicate that isoquercitrin is a potential stimulator of neuronal differentiation, through multiple Rho GTPase mediated mechanisms. CONCLUSIONS/SIGNIFICANCE As several members of the Rho GTPase family are implicated in human neurological disorders/injuries, our results suggest that isoquercitrin could be used in the treatment of these pathological states through its effect on this family of molecular switches.
Collapse
Affiliation(s)
- Gemma Palazzolo
- Cartilage Engineering+Regeneration Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Peter Horvath
- Light Microscopy and Screening Centre, ETH Zurich, Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering+Regeneration Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Renoudet VV, Costa-Mallen P, Hopkins E. A diet low in animal fat and rich in N-hexacosanol and fisetin is effective in reducing symptoms of Parkinson's disease. J Med Food 2012; 15:758-61. [PMID: 22846082 DOI: 10.1089/jmf.2012.0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study describes how foods rich in fisetin and hexacosanol added to a strict diet reversed most symptoms of Parkinson's disease (PD) in one patient. This is a case report involving outpatient care. The subject was a dietitian diagnosed with idiopathic PD in 2000 at the age of 53 years old, with a history of exposure to neurotoxins and no family history of PD. A basic diet started in 2000 consisted of predominantly fruits, vegetables, 100% whole grains, extra virgin olive oil, nuts, seeds, nonfat milk products, tea, coffee, spices, small amounts of dark chocolate, and less than 25 g of animal fat daily. The basic diet alone failed to prevent decline due to PD. In 2009, the basic diet was enhanced with a good dietary source of both fisetin and hexacosanol. Six months after the patient started the enhanced diet rich in fisetin and hexacosanol, a clinically significant improvement in symptoms was noted; the patient's attending neurologist reported that the clinical presentation of cogwheel rigidity, micrographia, bradykinesia, dystonia, constricted arm swing with gait, hypomimia, and retropulsion appeared to be resolved. The only worsening of symptoms occurred when the diet was not followed precisely. Little improvement in tremor or seborrhea was observed. The clinical improvement has persisted to date. To the best of our knowledge, this is the first case where adjunctive diet therapy resulted in a significant reduction of symptoms of PD without changing the type or increasing the amount of medications.
Collapse
|
30
|
Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, Du X, Lin M, Wang Q, Xu Y, Pan J. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 2012; 228:359-66. [DOI: 10.1016/j.bbr.2011.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/08/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
|
31
|
Animal Models of Stroke for Preclinical Drug Development: A Comparative Study of Flavonols for Cytoprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
A Clinically Relevant Rabbit Embolic Stroke Model for Acute Ischemic Stroke Therapy Development: Mechanisms and Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
He X, Blount JW, Ge S, Tang Y, Dixon RA. A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). PLANTA 2011; 233:843-55. [PMID: 21221632 DOI: 10.1007/s00425-010-1344-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/22/2010] [Indexed: 05/18/2023]
Abstract
Roots of kudzu (Pueraria lobata) are a rich source of isoflavone O- and C-glycosides. Although O-glycosylation of (iso)flavonoids has been well characterized at the molecular level, no plant isoflavonoid C-glycosyltransferase genes have yet been isolated. To address the biosynthesis of kudzu isoflavonoids, we generated 6,365 high-quality expressed sequence tags (ESTs) from a subtraction cDNA library constructed using RNA from roots that differentially accumulate puerarin. The ESTs were clustered into 722 TCs and 3,913 singletons, from which 15 family I glycosyltransferases (UGTs) were identified. Hierarchical clustering analysis of the expression patterns of these UGTs with isoflavone synthase (IFS) in a range of tissues identified UGTs with potential functions in isoflavone glycosylation. The open reading frames of these UGTs were expressed in E. coli for functional analysis, and one was shown to preferentially glycosylate isoflavones at the 7-O-position. In addition, ESTs corresponding to chalcone synthase, chalcone reductase, chalcone isomerase (CHI) and 2-hydroxyisoflavanone dehydratase were identified. Recombinant CHI proteins had high activities with both 6'-deoxy- and 6'-hydroxy chalcones, typical of Type II CHIs. Establishment of this EST database and identification of genes associated with kudzu isoflavone biosynthesis and glycosylation provide a new resource for metabolic engineering of bioactive kudzu isoflavones.
Collapse
Affiliation(s)
- XianZhi He
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
34
|
Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol 2011; 131:1291-9. [PMID: 21346776 DOI: 10.1038/jid.2011.6] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prognosis of advanced melanoma remains poor in spite of treatment advances, emphasizing the importance of additional preventive measures. Flavonoids, natural components of our diet, are being investigated for their chemopreventive/therapeutic properties. Microphthalmia-associated transcription factor (Mitf), downstream of the Wnt/β-catenin pathway, has become an important prognostic marker of melanoma. In this study, we show that treatment of 451Lu melanoma cells with the dietary flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) resulted in decreased cell viability with G1-phase arrest and disruption of Wnt/β-catenin signaling. This was accompanied by a decrease in the expression of Wnt protein and its co-receptors, as well as by a parallel increase in the expression of endogenous Wnt inhibitors. Fisetin-treated cells showed increased cytosolic levels of Axin and β-TrCP and decreased phosphorylation of glycogen synthase kinase 3β associated with decreased β-catenin stabilization. Fisetin-mediated interference with the functional cooperation between β-catenin and T-cell factor (TCF)-2 resulted in the downregulation of positively regulated TCF targets, such as c-myc, Brn-2, and Mitf. Flow-cytometric analysis of Mitf-overexpressing cells showed that fisetin repressed Mitf-induced cell proliferation. Finally, administration of fisetin to 451Lu-xenografted nude mice resulted in the inhibition of tumor development and decreased Mitf expression. Our data suggest that fisetin can be developed as an effective agent against melanoma because of its potential inhibitory effect on β-catenin/Mitf signaling.
Collapse
|
35
|
Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, Hu ZL, Fu H, Wang F, Chen JG. Antidepressant Effects of a Plant-Derived Flavonoid Baicalein Involving Extracellular Signal-Regulated Kinases Cascade. Biol Pharm Bull 2011; 34:253-9. [DOI: 10.1248/bpb.34.253] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhe Xiong
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Bo Jiang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Jia Tian
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Liang-Liang Shi
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Jun Gu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Hui Fu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| |
Collapse
|
36
|
Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 2010; 20:261-70. [PMID: 20952447 DOI: 10.1093/hmg/ddq460] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is an inherited, progressive and ultimately fatal neurodegenerative disorder that is characterized by psychiatric, cognitive and motor symptoms. Among the pathways implicated in HD are those involving mitogen-activated protein kinase signaling and particularly the Ras-extracellular signal-regulated kinase (ERK) cascade. Studies in both cells and animal models suggest that ERK activation might provide a novel therapeutic target for the treatment of HD but compounds that specifically activate ERK are few. To test the hypothesis that pharmaceutical activation of ERK might be protective for HD, a polyphenol, fisetin, which was previously shown to activate the Ras-ERK cascade, was tested in three different models of HD: PC12 cells expressing mutant Httex1 under the control of an inducible promoter, Drosophila expressing mutant Httex1 and the R6/2 mouse model of HD. The results indicate that fisetin can reduce the impact of mutant huntingtin in each of these disease models. Prompted by this observation, we determined that the related polyphenol, resveratrol, also activates ERK and is protective in HD models. Notably, although more than a dozen small molecule inhibitors of ERK activation are in clinical trials, very few small molecule activators of ERK signaling are reported. Thus, fisetin, resveratrol and related compounds might be useful for the treatment of HD by virtue of their unique ability to activate ERK.
Collapse
Affiliation(s)
- Pamela Maher
- Department of Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kim JY, Jeon YK, Jeon W, Nam MJ. Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 2010; 48:2259-64. [DOI: 10.1016/j.fct.2010.05.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/29/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
|
38
|
|